Что такое электрическая емкость и в чем она измеряется

Что такое электрическая емкость и в чем она измеряется

Что такое электрическая ёмкость?

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников. В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

Рис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

Рис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

  • переменные;
  • электролитические;
  • оксидные;
  • бумажные;
  • комбинированные и другие.

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

Ёмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принято фараду: 1 Ф = 1 Кл/1В. Поскольку фарада величина огромная, то для измерения емкости на практике она мало пригодна. Поэтому используют приставки:

  • мили (м) = 10 -3 ;
  • микро (мк) = 10 -6 ;
  • нано (н) = 10 -9 ;
  • пико (пк) = 10 -12 ;

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, влиянием на который других элементов цепей можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от него, а как известно, потенциал точки, бесконечно удаленной в пространстве, равен 0.

Электрическую емкость C уединенного проводника, определяют как количество электричества q, которое требуется для повышения электрического потенциала на 1 В: С = q/ϕ Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной и переменной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой площадью обкладок физики смогли понять, как взаимная емкость регулируется площадями пластин, что позволило им создать конденсаторы с переменной емкостью (см. рис. 5).

Рис. 5. Конденсатор переменной емкости

Идея изменения емкости состояла в том, чтобы путем поворота плоской обкладки изменять площадь поверхности, которая располагается напротив другой пластины. Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с переменной емкостью нашли применение в первых радиоприемниках для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых электрических схемах.

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

  • высокие показатели емкости при малом объеме;
  • применение в цепях с постоянным током.

Недостатки:

  • необходимо соблюдать полярность;
  • ограниченный срок службы;
  • чувствительность к повышенным напряжениям.

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала применяется керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня промышленность поставляет на рынок множество конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Конденсаторы различных типов

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть атомов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С целью увеличения напряжения аккумуляторы последовательно соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 В необходимо создать батарею из трех секций, а на 12 В – батарею из 6 секций.

Для характеристики аккумуляторов (батарей) используются параметры:

  • емкости;
  • номинального напряжения;
  • максимального тока разряда.

Единицей емкости аккумулятора является ампер-час (А*ч) или кратные ей миллиампер-часы (мА*ч). Емкость аккумулятора зависит от площади пластин. Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не применяется, так как проще и надежнее создать аккумулятор с большими пластинами.

Электрическая емкость

Электрическая ёмкость — характеристика проводника, характеризующая его способность накапливать электрический заряд. Ёмкость определяется как отношение величины заряда проводника к потенциалу проводника. Ёмкость обозначается как C.

Читайте также  Копчение крольчатины и птицы

где Q — заряд, — потенциал.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удаленной точки принят равным нулю. Она определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость в вакууме проводящего шара радиуса R равна (в системе СИ):

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком — конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь обкладок, d — расстояние между обкладками, ε — диэлектрическая проницаемость среды между обкладками, ε = 8.854*10 -12 Ф/м — электрическая постоянная.

  • Электрическая искра
  • Электрическая константа

Полезное

Смотреть что такое «Электрическая емкость» в других словарях:

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ — (С) величина, характеризующая способность проводника удерживать электрический заряд. Для уединенного проводника С = Q/j, где Q заряд проводника, j его потенциал. Электрическая емкость конденсатора С = Q/(j1 j2), где Q абсолютная величина заряда… … Большой Энциклопедический словарь

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ — электроемкость, величина, характеризующая способность тела воспринимать электр. заряды и представляющая собой количество электричества, к рым нужно зарядить тело для того, чтобы потенциал его повысить на единицу (1 в). Э. е. проводящего тела,… … Технический железнодорожный словарь

электрическая емкость — elektrinė talpa statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas laidininko ar laidininkų sistemos elektros krūvio q ir jo (jos) potencialo u dalmeniu: C = q/u. Priklauso nuo laidininkų pavidalo, matmenų, tarpusavio … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электрическая емкость — elektrinė talpa statusas T sritis chemija apibrėžtis Dydis, apibūdinantis laidininko gebėjimą sukaupti elektros krūvį. atitikmenys: angl. electric capacitance; electrical capacitance rus. электрическая емкость … Chemijos terminų aiškinamasis žodynas

Электрическая емкость конденсатора — электрическая емкость между электродами электрического конденсатора. Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

электрическая емкость (знакосинтезирующего индикатора) — C Статическая емкость знакосинтезирующего индикатора, измеренная при отсутствии свечения в элементах отображения. [ГОСТ 25066 91] Тематики индикаторы знакосинтезирующие … Справочник технического переводчика

Электрическая емкость проводника — скалярная величина, характеризующая способность проводника накапливать электрический заряд, равная отношению электрического заряда проводника к его электрическому потенциалу в предположении, что все другие проводники бесконечно удалены и что… … Официальная терминология

(электрическая) емкость конденсатора — 112 (электрическая) емкость конденсатора Электрическая емкость между электродами электрического конденсатора Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации

электрическая емкость (знакосинтезирующего индикатора) — 89 электрическая емкость (знакосинтезирующего индикатора); С: Статическая емкость знакосинтезирующего индикатора, измеренная при отсутствии свечения в элементах отображения. Источник: ГОСТ 25066 91: Индикаторы знакосинтезирующие. Термины,… … Словарь-справочник терминов нормативно-технической документации

(Электрическая) емкость конденсатора — 1. Электрическая емкость между электродами электрического конденсатора Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

Электроемкость. Конденсаторы

Что такое электроемкость проводников

Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q 1 и q 2 ), то между ними возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δ φ . Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U .

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника ( q ) к разности потенциалов между этими двумя проводниками.

В виде формулы это записывается так: C = q ∆ φ = q U .

Для измерения электрической емкости применяется единица, называемая фарад. Она обозначается буквой Ф .

Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Часть электрического поля вблизи конденсатора называется полем рассеяния.

Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

Исходя из принципа суперпозиции, можно утверждать, что напряженность E → поля, которое создают обе пластины конденсатора, будет равна сумме напряженностей E + → и E — → полей каждой пластины, то есть E → = E + → + E — → .

Векторы напряженностей обеих пластин во внутренней части конденсатора будут параллельны друг другу. Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E = 2 E 1 = σ ε 0 .

Как рассчитать электроемкость конденсатора

Вне пластин векторы напряженности будут направлены в противоположные друг от друга стороны, значит, E будет равно нулю. Если мы обозначим заряд каждой обкладки как q , а ее площадь как S , то соотношение q S даст нам представление о поверхностной плотности. Умножив E на расстояние между обкладками ( d ) , мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

C = q ∆ φ = σ · S E · d = ε 0 S d .

Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

Данная формула называется формулой электроемкости плоского конденсатора.

Читайте также  Что представляет собой система обеспечения пожарной безопасности?

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Сферическим конденсатором называется система из 2 -х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R 1 и R 2 соответственно.

Цилиндрическим конденсатором называется системы из двух проводников цилиндрической формы, длина которых равна L , а радиусы R 1 и R 2 .

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

  • C = 4 πε 0 ε R 1 R 2 R 2 — R 1 (сферический конденсатор),
  • C = 2 π ε 0 ε L ln R 2 R 1 (цилиндрический конденсатор).

Как рассчитать электроемкость батареи конденсаторов

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U 1 = U 2 = U , а заряды можно найти по формулам q 1 = С 1 U и q 2 = C 2 U . При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C , заряд – q = q 1 + q 2 , а напряжение – U . В виде формулы это выглядит так:

С = q 1 + q 2 U или C = C 1 + C 2

Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

Рисунок 1 . 6 . 3 . Конденсаторы, соединенные параллельно. C = C 1 + C 2

Рисунок 1 . 6 . 4 . Конденсаторы, соединенные последовательно: 1 C = 1 C 1 + 1 C 2

Если же батарея состоит из двух последовательно соединенных конденсаторов, то заряды обоих будут одинаковы: q 1 = q 2 = q . Найти их напряжения можно так: U 1 = q C 1 и U 2 = q C 2 . Такую систему тоже можно считать одним конденсатором, заряд которого равен q , а напряжение U = U 1 + U 2 .

C = q U 1 + U 2 или 1 C = 1 C 1 + 1 C 2

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Что такое электрическая емкость и в чем она измеряется

  • Определение
  • Конденсаторы
  • Аккумуляторы и электроемкость

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной. Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках. Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Для двух концентрических сфер с общим центром:

Для цилиндрического конденсатора:

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

Электроемкость конденсатора

О чем эта статья:

Электроемкость проводников

Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.

Электроемкость

C = q/φ

С — электроемкость [Ф]

q — электрический заряд [Кл]

φ — потенциал [В]

Читайте также  Пыльца и перга

Особенность этой величины в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости. Самая популярная — формула электроемкости шара.

Электроемкость шара

C = 4πεεr

С — электроемкость [Ф]

ε — относительная диэлектрическая проницаемость среды [-]

ε — электрическая постоянная

ε = 8,85 × 10 -12 Ф/м

r — радиус шара [м]

Конденсаторы

Способность накапливать заряд — полезная штука, поэтому люди придумали конденсаторы. Это такие устройства, которые помогают применять электрическую емкость проводников в практических целях.

Конденсатор состоит из двух проводящих пластин (обкладок), разделенных диэлектриком. Между проводящими пластинами образуется электрическое поле, все силовые линии которого идут от одной обкладки к другой.

Когда заряд накапливается на обкладках, происходит процесс под названием зарядка конденсатора. Заряды на разных обкладках равны по величине и противоположны по знаку.

Электроемкость конденсатора измеряется отношением заряда на одной из обкладок к разности потенциалов между обкладками:

Электроемкость конденсатора

C = q/U

С — электроемкость [Ф]

q — электрический заряд [Кл]

U — напряжение (разность потенциалов) [В]

По закону сохранения заряда, если обкладки заряженного конденсатора соединить проводником, то заряды нейтрализуются, переходя с одной обкладки на другую. Так происходит разрядка конденсатора.

Любой конденсатор имеет предел напряжения. Если оно окажется слишком большим, то случится пробой диэлектрика, то есть разрядка произойдет прямо через диэлектрик. Такой конденсатор больше работать не будет.

Виды конденсаторов

Энергия конденсатора

У конденсатора, как и у любой системы заряженных тел, есть энергия. Чтобы зарядить конденсатор, необходимо совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии эта работа будет как раз равна энергии конденсатора.

Доказать, что заряженный конденсатор обладает энергией, несложно. Для этого понадобится электрическая цепь, содержащая в себе лампу накаливания и конденсатор. При разрядке конденсатора вспыхнет лампа — это будет означать, что энергия конденсатора превратилась в тепло и энергию света.

Чтобы вывести формулу энергии плоского конденсатора, нам понадобится формула энергии электростатического поля.

Энергия электростатического поля

Wp = qEd

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

E — напряженность электрического поля [В/м]

d — расстояние от заряда [м]

В случае с конденсатором d будет представлять собой расстояние между пластинами.

Заряд на пластинах конденсатора равен по модулю, поэтому можно рассматривать напряженность поля, создаваемую только одной из пластин.

Напряженность поля одной пластины равна Е/2, где Е — напряженность поля в конденсаторе.

В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины.

Тогда энергия конденсатора равна:

Wp = qEd/2

Разность потенциалов между обкладками конденсатора можно представить, как произведение напряженности на расстояние:

U = Ed

Wp = qU/2

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин.

Заменив в формуле разность потенциалов или заряд с помощью выражения для электроемкости конденсатора C = q/U, получим три различных формулы энергии конденсатора:

Энергия конденсатора

Wp = qU/2

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

U — напряжение на конденсаторе [В]

Энергия конденсатора

Wp = q 2 /2C

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

C — электроемкость конденсатора [Ф]

Энергия конденсатора

Wp = CU 2 /2

Wp — энергия электростатического поля [Дж]

C — электроемкость конденсатора [Ф]

U — напряжение на конденсаторе [В]

Эти формулы справедливы для любого конденсатора.

Применение конденсаторов

Конденсатор есть в каждом современном устройстве. Без него не будет работать ни один прибор. Разберем два самых наглядных примера.

Пример раз — вспышка

Без конденсатора вспышка в фотоаппарате работала бы не так, как мы привыкли, а с большими задержками, и к тому же быстро разряжала бы аккумулятор. Конденсатор в этом случае работает как батарейка. Он накапливает заряд от аккумулятора и хранит его до востребования. Когда нам нужна вспышка, конденсатор разряжается, чтобы она сработала и вылетела птичка.

Пример два — тачскрин

Тачскрин на телефоне работает по принципу, схожему с конденсатором. В самом смартфоне, конечно, тоже есть множество конденсаторов, но этот принцип куда интереснее.

Дело в том, что тело человека тоже умеет проводить электричество — у него даже есть сопротивление и электроемкость. Так что можно считать человеческий палец пластиной конденсатора — тело же проводник, почему бы и нет. Но если поднести палец к металлической пластине, получится плохой конденсатор.

В экран телефона встроена матрица из микроскопических пластинок. Когда мы подносим палец к одной из них, получается своего рода конденсатор. Когда перемещаем палец ближе к другой пластинке — еще один конденсатор. Телефон постоянно проверяет пластинки, и если обнаруживает, что у какой-то из них внезапно изменилась электроемкость, значит, рядом есть палец. Координаты пластинки с изменившейся электроемкостью передаются операционной системе телефона, а она уже решает, что с этими координатами делать.

Кстати, то же самое можно проделать, если взять обычную сосиску и поводить ей по экрану смартфона. Тачскрин будет реагировать на все контакты, как реагирует на человеческий палец.

Это не единственный вариант реализации тачскрина, но один из лучших на сегодняшний день. В айфоне используется именно он.

Электрическая ёмкость

Из Википедии — свободной энциклопедии

Электрическая ёмкость Размерность Единицы измерения СИ СГС
C
L -2 M -1 T 4 I 2
фарад
сантиметр

Электри́ческая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками [1] .

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

C = Q φ ,

где Q — заряд, φ — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса R равна (в системе СИ):

C = 4 π ε 0 ε r R ,

Известно, что φ 1 − φ 2 = ∫ 1 2 E d l ⇒ φ = ∫ R ∞ E d l = 1 4 π ε r ε 0 ∫ R ∞ q r 2 d r = 1 4 π ε ε 0 q R .

Так как C = q φ , то подставив сюда найденный φ , получим, что C = 4 π ε 0 ε r R .

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком или вакуумом, — к конденсатору. В этом случае ёмкость (взаимная ёмкость) этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

C = ε 0 ε r S d ,

где S — площадь одной обкладки (подразумевается, что обкладки одинаковы), d — расстояние между обкладками, εr — относительная диэлектрическая проницаемость среды между обкладками.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий