Что такое гармоники в электрических сетях

Что такое гармоники в электрических сетях

Максимально просто о гармониках и проблемах, возникающих от них

В идеале любой источник питания, в том числе ТП распределительной сети, должен стабильно давать ток идеально синусоидального напряжения в каждом месте силовой сети абонента-потребителя, однако по ряду причин электросетевым компаниям часто бывает трудно обеспечить такие условия из-за эмиссии и трансмиссии гармонических искажений. Гармонические искажения тока, напряжения далеко не новость, но в настоящее время они представляют собой одну из основных проблем, вызывающих нарушения стабильности электроснабжения и качества электроэнергии в электроэнергетике.

В первых электроэнергетических системах гармонические искажения в основном вызывались насыщением трансформаторов, промышленных дуговых печей, мощных электросварочных аппаратов и т. п., а сами гармоники представляли сравнительно небольшую проблему из-за консервативной конструкции силового оборудования. Сегодня все более широкое использование нелинейных нагрузок в силовых сетях промышленных и непромышленных объектов обуславливает увеличение объемов гармонических искажений в распределительных сетях, причем именно через распределительные сети из-за «перегенерации» искажений трансформаторами ТП электросетевой компании силовые сети абонентов обмениваются гармониками между собой, (трансмиссия).

Наиболее часто используемой нелинейной нагрузкой является, пожалуй, ШИМ-преобразователь, широко используемый в сталелитейной, бумажной и текстильной промышленности, в приводах управление скоростью электродвигателя.

Гистограмма амплитуд гармоник, генерируемых в шестипульсном ШИМ-преобразователе

Наряду с этим, свой вклад в засорение сетей гармониками вносят системы энергосберегающего освещения, электроника центров обработки данных, программно-технических комплексов АСУ, электрические транспортные системы, бытовые электроприборы и т. д. К 2000 году было зафиксировано, что на электронные нагрузки приходилось около половины спроса на электроэнергию в США и развитых странах мира, а за два десятка лет нового века эта доля возросла до 70-80 %, и это вывело проблему гармонических искажений в перечень приоритетных и критических.


Упрощенно, нелинейные нагрузки — это нагрузки, в которых форма волны тока не похожа на форму волны приложенного напряжения по ряду причин, например, из-за использования электронных переключателей, которые проводят ток только в течение части периода промышленной частоты и, следовательно, здесь закон Ома не может описать связь между напряжением и током. Среди наиболее распространенных нелинейных нагрузок — все типы выпрямительных устройств, в том числе источники бесперебойного питания, преобразователи напряжения компьютеров, частотно-регулируемые приводы, электрические печи, люминесцентные лампы и т. д. Нелинейные нагрузки вызывают искажение формы сигнала напряжения, перегрев трансформаторов и других силовых устройств, перегрузку по току проводов и клемм соединения оборудования, телефонные помехи, сбои в управлении микропроцессорами и пр.

Сам термин «гармоники» заимствован из области акустики, где он был связан с вибрацией струны или молекул воздуха с частотой, кратной базовой частоте, а гармоническая составляющая в системе питания переменного тока определяется как синусоидальная составляющая периодической формы волны, частота которой равна целому кратному основной частоте системы. Тогда гармоники в формах волны напряжения или тока можно представить, как идеально синусоидальные составляющие частот, кратных основной частоте: fn=(n)·f1, где n — порядок гармоники. Т. е. для наших сетей с f1=50 Гц частота третьей (n = 3) гармоники будет f3=3·50=150 Гц, пятой (n=5) f5=5·50=250 Гц, седьмой (n=7) f7=7·50=350 Гц и т. д. Хотя кривые зависимости тока на фундаментальной частоте и токов гармоник имеют форму синусоиды, результирующая кривая искажена из-за взаимного влияния токов разных частот (см. на рис. ниже).

Синусоиды тока фундаментальной частоты и токов 3, 5 и 7-й гармоник (сверху), результирующая кривая тока в силовой сети из-за взаимного влияния токов разных частот (снизу

Ситуация стала более сложной с применением конденсаторных батарей, используемых на промышленных предприятиях для коррекции коэффициента мощности, и энергокомпаниями для стабилизации напряжения вдоль распределительных линий. Результирующее реактивное сопротивление емкости образует колебательный контур с индуктивным реактивным сопротивлением системы на определенной (резонансной) частоте, которая может совпадать с одной из характеристических гармоник нагрузки, что обуславливает значительный наброс токов гармоник, перенапряжения, способные повредить изоляцию. По факту далеко не решает проблему в полном объеме использование активных фильтров гармоник (АФГ), по сути, тех же ШИМ-преобразователей (инвертеров), которые демпфируют гармоники противофазными токами «ниже» места присоединения, а для силовой сети «выше» остаются источниками эмиссии гармонических искажений.

Такая ситуация ставит перед инженерами сложную задачу по выявлению и исправлению чрезмерных уровней гармонических искажений формы сигналов тока и напряжения от стадии планирования до стадии проектирования энергетических и промышленных установок, что позволит не только поддерживать сети и оборудование в оптимальных условиях эксплуатации, но и предвидеть потенциальные проблемы с интеграцией, модернизацией нелинейных нагрузок, а также технических средств для нивелирования перетоков реактивной мощности и/или фильтров гармоник.

Гармоники в электрических сетях: причины, источники, защита

Работа большинства электрических приборов обеспечивается качеством поступающей на них электрической энергии. Но даже в условиях безаварийной работы в системе возникают процессы, обуславливающие возникновение гармоник в электрических сетях. При этом никаких отключений или нарушений может и не происходить, большинство гармоник спокойно вырабатываются во всех цепях, независимо от рода нагрузки. Однако с возрастанием их величины, возможен ряд негативных последствий, как для потребителей, так и для энергосистемы в целом.

Что такое гармоники?

Если напряжение и ток, вырабатываемые источником, максимально приближается к форме идеальной синусоиды, то из-за нелинейных нагрузок, подключенных к электрической цепи, форма начального сигнала получает искажение. Гармоники представляют собой производные по частоте от основной синусоиды в 50 Гц и являются кратными ее величине.

По кратности гармоники подразделяются на четные и нечетные. То есть гармоника №1 – это 50 Гц, 2 – 100 Гц, 3 -150 Гц и т.д. Каждая из них является одной из составляющих результирующей формы напряжения и тока. А значит, что напряжение и ток в сети можно свободно разложить на гармонические составляющие.

Гармоники и их сложение

Посмотрите на рисунок выше, здесь вы видите детальный пример разложения синусоиды на гармоники и их влияние на форму синусоидального напряжения. В первой позиции изображены результирующая функция с нелинейными искажениями, которые обусловлены показанными ниже нечетными гармониками и подобными им с большей частотой. Величина этих гармоник будет определять величину скачков и провалов на результирующем сигнале. Поэтому, чем больше проявляется та или иная гармоника, тем больше кривая будет отличаться от синусоиды.

По сути, гармоника представляет собой паразитную ЭДС, которая никак не поглощается существующими потребителями или поглощается только частично. Из-за чего возникает негативное влияние на все силовые сети. Естественное поглощение осуществляют лишь активные сопротивления, но в размере пропорциональном потребляемой ими мощности. В то же время, сами потребители можно рассматривать как источники, активно генерирующие искаженный сигнал.

Причины и источники гармоник в электрических сетях

Главной причиной гармонического искажения является протекание каких-либо переходных процессов в электрических сетях. Независимо от характера созданной нагрузки, переходной процесс можно наблюдать в работе той же лампы накаливания, которая, казалось бы, характеризуется исключительно активными потерями. Так, разница между сопротивлением нити лампы в холодном и нагретом состоянии создает переходной процесс, который привносит скачок. Но из-за низкого уровня искажения и относительно кратковременного протекания, влияние на всю систему получается ничтожным.

Читайте также  Яблоня: вопросы и ответы

Поэтому можно смело сказать, что и активные, и реактивные сопротивления в сетях электропитания могут способствовать генерации гармоник. Тем не менее, существует ряд устройств, обуславливающих весомую величину искажения, которая способна нанести существенный ущерб приборам. На практике к источникам искажения относят такие виды оборудования:

  • Силовое электрооборудование – приводы постоянного и переменного тока, высокочастотные плавильные печи, полупроводниковые преобразователи, источники бесперебойного питания (ИБП), преобразователи частоты.
  • Устройства, работающие по принципу формирования электрической дуги – электросварочные установки, дуговые печи, лампы освещения (ДРЛ, люминесцентные и другие).
  • Насыщаемые приборы – двигатели, трансформаторы, обладающие магнитопроводом, который может достигнуть насыщения петли гистерезиса. Без такового насыщения их вклад в формирование гармонической составляющей будет незначительным.

Среди бытовых приборов значительный вклад в генерацию несинусоидальных составляющих вносят те же микроволновые печи. Обратите внимание, что из-за особенностей режима работы одна такая печь способна кратковременно снижать уровень напряжения в сети на 2 – 4%, и, что куда более существенно, повышать коэффициент искажения его кривой на 6 – 18%.

Категории и принцип разделения

В соответствии с особенностями протекания процесса в сетях и источниках электропитания, все гармонические составляющие условно разделяются по таким параметрам:

  • по пути распространения выделяют пространственные либо кондуктивные;
  • по прогнозируемости времени возникновения выделяют случайные либо систематические;
  • по продолжительности могут быть кратковременными (импульсными) либо длительными.

Так, импульсные возмущения обуславливаются единичными коммутациями в питающей сети, короткими замыканиями, перенапряжениями, которые после их отключения потребовали бы ручного включения. А в случае срабатывания АПВ, в основной гармонике появляются уже прогнозируемые изменения, наблюдающиеся в нескольких периодах.

Длительные изменения обуславливаются какой-либо циклической нагрузкой, подаваемой мощными потребителями. Для возникновения таких высших гармоник, как правило, необходима ограниченная мощность сети и относительно большие нелинейные нагрузки, обуславливающие генерацию реактивной мощности.

Возможные последствия

В случае постоянно присутствующего фактора, генерирующего гармоники, их воздействие может обуславливать различные негативные последствия в электрической сети. Из которых особо следует выделить:

  • Сопутствующий нагрев, выводящий из строя изоляцию двигателей, обмоток трансформаторов, снижающий сопротивление конденсаторов и.т. При нагревании фазного провода или других токопроводящих элементов в диэлектриках возникают необратимые процессы, снижающие их изоляционные свойства.
  • Ложное срабатывание в распределительных сетях – приводит к отключению автоматов, высоковольтных выключателей и прочих устройств, реагирующих на изменение режима, обусловленное гармониками.
  • Вызывает асимметрию в промышленных сетях с трехфазными источниками при возникновении гармоники на одной фазе. От чего может нарушаться нормальная работа трехфазных выпрямителей, силовых трансформаторов, трехфазных ИБП и прочего оборудования.
  • Возникновение шума в сетях связи, влияние на смежные слаботочные и силовые кабели за счет наведенной ЭДС. На величину гармоники ЭДС влияет как расстояние между проводниками, так и продолжительность их приближения.
  • Приводит к преждевременному электрическому старению оборудования. За счет разрушения чувствительных элементов, высокоточные приборы утрачивают класс точности и подвергаются преждевременному изнашиванию.
  • Обуславливает дополнительные финансовые расходы, обуславливаемые потерями от индуктивных нагрузок, остановкой производства, внеочередными ремонтами и преждевременной поломкой.
  • Потребность увеличения сечения нулевых проводов в связи с суммированием гармоник кратных 3-ей в трехфазных сетях.

Рассмотрите на примере негативное влияние на работу трехфазных цепей. В идеальном варианте, когда каждая из фаз запитывает линейную нагрузку, система находится в равновесии. Это означает, что в сети отсутствуют гармоники, а в нулевом проводе ток, так как все токи при симметричной нагрузке смещены на 120º и компенсируют друг друга в нейтрали.

Если в схеме электроснабжения на одной из фаз возникает потребитель или фактор, искривляющий переменный ток, то возникает автоматическое изменение остальных фазных токов, их смещение относительно начальной величины и угла. Из-за нарушения симметрии и отсутствия компенсации в нулевом проводе начинает протекать ток.

Рис. 2. Развитие тока в нейтрали

Как показано на рисунке 2, нечетные гармоники кратные 3-ей обладают тем же направлением, что и основной ток. Но в связи с нарушением компенсирующего эффекта симметричной системы, они накладываются друг на друга и способны выдать в нейтраль ток, значительно превышающий номинальный для этой цепи. Из-за чего возникает перегрев, который может вызвать аварийные ситуации.

Все вышеперечисленные последствия ведут к снижению качества электрической энергии, чрезмерным перегрузкам и последующему падению фазного напряжения. В частных случаях, последствия протекания гармоник могут создавать угрозу для персонала и потребителей. С целью предотвращения таких последствий на электростанциях, трехфазных кабелях и прочем оборудовании устанавливается защита от гармоник.

Защита от гармоник

Для защиты применяются устройства с активными и пассивными элементами, действие которых направлено на поглощение или компенсацию гармоник в сети. Наиболее простым вариантом являются LC-фильтры, состоящие из линейного дросселя и конденсатора.

Рис. 3. Схема LC-фильтра

Посмотрите на рисунок 3, здесь изображена принципиальная схема фильтра. Его работа основана на индуктивном сопротивлении катушки L, которое не позволяет току мгновенно набирать или терять величину. И на емкости конденсатора C, которая обеспечивает постепенное нарастание или падение напряжения. Это означает, что гармоники не могут резко изменить форму синусоиды и обеспечивают ее плавное нарастание и спад на нагрузке RН.

При последовательном включении катушки и конденсатора с конкретной подборкой параметров, их комплексное сопротивление будет равно нулю для какой-то гармоники. Недостатком такого пассивного фильтра является необходимость формирования отдельной цепи для каждой составляющей в сети. При этом необходимо учитывать их взаимодействие. Так, к примеру, при гашении пятой гармоники происходит усиление седьмой, поэтому на практике устанавливаются несколько фильтров подряд, как показано на рисунке 4.

Рис. 4. Шунтирующий фильтр

За счет того, что каждая цепочка L1-C1, L2-C2, L3-C3 шунтирует соответствующую составляющую, фильтр получил название шунтирующего. Помимо этого, в качестве входного фильтра могут применяться устройства с активным подавлением гармоник.

Рис. 5 Принцип действия активного кондиционера гармоник

Посмотрите на рисунок 5, здесь изображен активный фильтр. Источник питания генерирует ток ips, на который оказывает влияние нелинейная нагрузка, из-за чего в сети получается несинусоидальная кривая in. Активный кондиционер гармоник (АКГ) измеряет величину всех нелинейных токов iahc и выдает в сеть такие же токи, но с противоположным углом. Что позволяет нейтрализовать гармоники и выдать потребителю ток первой гармоники максимально приближенный к синусоиде.

Установка любого из существующих видов защиты требует детального анализа гармонических составляющих, нагрузок, коэффициентов амплитуды и коэффициентов мощности для конкретной сети. Чтобы подобрать наиболее эффективный способ удаления и выполнить соответствующие настройки.

Что такое гармоники в электрических сетях

  • Определение гармоник
  • Источники помех
  • Последствия гармонических помех

Определение гармоник

График сигнала, который изменяется по синусоидальному закону, имеет вид:

Но это значительно отличается от реальной формы напряжения в электрической сети:

Эти зазубрины и всплески и вызваны гармониками. Мы попытаемся рассказать об этом явлении простыми словами. Изображенный выше график можно представить как сумму сигналов различной частоты и величины. Если всё это сложить, то в результате получится именно такой сигнал. Пример и результат сложения сигналов изображен на графике ниже:

Читайте также  Калькулятор цветовой маркировки резисторов

Гармоники различают по номерам, где первая гармоника — это та составляющая, у которой самая большая величина. Однако такое описание слишком кратко. Поэтому давайте приведем формулу определения величины гармоники. Это возможно при гармоническом анализе и разложении в ряд Фурье:

Из этой формулы можно выделить и величины частот и фаз гармонических составляющих электрической сети и любого другого синусоидального сигнала.

Источники помех

К источникам помех можно отнести целый ряд оборудования, начиная от бытовых приборов, заканчивая мощными промышленными электрическими машинами. Для начала давайте кратко рассмотрим причины их возникновения.

Гармоники в электрической сети переменного тока возникают из-за особенностей электрооборудования, например из-за нелинейности их характеристик, или характера потребления тока.

Например, в трёхфазных сетях в магнитопроводах трансформаторов длины магнитных путей средних и крайних фаз различаются почти в 2 раза, поэтому и токи их намагничивания различаются до полутора раз. Отсюда возникают гармоники в трёхфазных сетях.

Другой источник помех в электротехнике — это электродвигатели, как трёхфазные синхронные и асинхронные, так и однофазные, в том числе и универсальные коллекторные двигатели. Последний тип двигателей используется в большей части бытовой техники, например:

  • стиральные машины;
  • кухонные комбайны;
  • дрели, болгарки, перфораторы и пр.

В результате работы импульсных блоков питания возникают высокочастотные гармоники (помехи) в электрической сети. Чтобы понять как они образуются, нужно иметь сведения об их внутреннем устройстве. Это связано с тем, что ток первичной обмотки ИБП отличается от непрерывного, он протекает только тогда, когда открыт силовой полупроводниковый ключ. А последний открывается и закрывается с частотой выше 20 кГц.

Интересно:

Для уменьшения этих гармоник используют фильтры электромагнитных помех, например, синфазный дроссель и конденсаторы. Для улучшения графика потребления тока относительно питающего однофазного напряжения используют активные корректоры коэффициента мощности (рус. ККМ, англ. PFC).

Такие блоки питания установлены в:

  • светодиодных лампах;
  • ЭПРА для люминесцентных ламп;
  • компьютерные блоки питания;
  • современные зарядные устройства для мобильных телефонов;
  • телевизоры и прочая техника.

Также к этим источникам питания можно отнести и преобразователи частоты.

Последствия гармонических помех

Наличие гармоник в электрической сети переменного тока вызывает определенные проблемы. Среди них – повышенный нагрев электродвигателей и питающих проводов. Последствия влияния гармоник – это вибрация двигателей. Дальнейшие последствия могут быть различными – начиная от ускоренного износа подшипников ротора двигателя, заканчивая пробоем на корпус обмоток от повышенного нагрева.

В электрике встречаются ложные срабатывания коммутационной и защитной аппаратуры – автоматических выключателей, контакторов и магнитных пускателей. В звуковой аппаратуре и технике для связи из-за гармоник возникают помехи. С ними борются аналогично – установкой фильтров электромагнитных помех.

На видео ниже рассказывается, что такое гармоники и интергармоники в электросети:

В заключение хотелось бы отметить, что гармоники в электрических сетях в принципе не несут никакой пользы. Они лишь вызывают неисправности, ложные срабатывания коммутационной аппаратуры и прочие проявления нестабильности в работе. Это может нести не только неудобства в эксплуатации, но и экономические проблемы, убытки и аварийные ситуации, которые могут быть опасны для жизни.

Материалы по теме:

Гармоники тока и напряжения в электросетях

Проблема гармоник….

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Если вы сталкиваетесь с таким оборудованием или имеете опыт работы в сетях с гармониками, тогда дроссели с конденсаторами или фильтрокомпенсирующие установки (ФКУ) могут прийти вам на помощь. Гармонические искажения и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками.

дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;

ложные срабатывания автоматических выключателей и предохранителей;

наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;

гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;

повреждение чувствительного электронного оборудования;

интерференция систем коммуникации.

Следующие разделы являются описанием гармоник, характеризацией проблемы и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников.

Сейчас, широко используемые в выпрямительных цепях UPS полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска пришедшие на смену устаревшим устройствам изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры привнесли существенные изменения в схемотехнику систем контроля, они, также, создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

Силовое электронное оборудование: частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты.

Сварочное, дуговое оборудование: дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы)

Насыщаемые устройства: Трансформаторы, двигатели, генераторы, и т.д. Гармонические амплитуды на этих устройствах являются обычно незначительна по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что насыщение не происходит.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной (основной) частотой 50 Гц (т.е 1-я гармоника=50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

Гармоническое содержание синусоиды

Тиристоры и SCR выпрямители обычно проявляются числом пульсаций постоянного тока которые они производят каждый период. Обычно это 6-и или 12-пульсные выпрямители. Есть много факторов, которые могут влиять на гармоническое содержание, но типичные гармонические токи, показанные как процент от фундаментального тока 50 Гц, показаны в таблице. Другие номера гармоник также будут присутствовать, в небольшой степени, но из практических соображений они не приводятся.

Гармоники в электрических сетях, причины, влияние, методы борьбы

Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это результат искажения частоты тока или напряжения питания, которое может быть вызвано характером нагрузки или самим источником питания. Причины искажения: постоянные и непостоянные нелинейные нагрузки (работа выпрямителей, преобразователей частоты, трансформаторов разовое включение большого потребителя, например сварочного автомата или станка), цикличные нагрузки (крупный потребитель подключается в определенное время суток к сети), пиковые нагрузки при массовом потреблении электроэнергии. Часто причиной возникновения гармонических колебаний по напряжению является изношенность оборудования в энергогенерирующей отрасли и распределительных сетях (в основном, это старые ТП и сети с малым пределом потребления).

  1. Источники гармонических токов:
  2. Последствия гармоник и защита
  3. Негативные последствия гармонических токов:
  4. Экономические последствия гармонических токов:
Читайте также  Как разметить стены и потолок под проводку?

Источники гармонических токов:

— двигатели с плавным пуском, управляющие устройства (преобразователи частоты), блоки питания;

— печи (дуговые, индукционные), сварочные аппараты;

— энергосберегающие лампы (люминесцентные, дуговые, газоразрядные);

— современная бытовая и офисная техника.

Критическим для сети переменного тока считается оборудование, способное вызывать гармоники, соответствующее 20% потребления по мощности. В таких случаях необходимо применять меры по устранению токовых искажений.

Последствия гармоник и защита

По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом. В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.

Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.

Важно! При наличии большого количества гармоник возможны однофазные КЗ с пробоем на землю. Также большое количество гармоник приводит к перегрузке нейтрали, что снижает степень защищенности системы.

Для защиты от гармоник в устройстве используются различные схемы. Основные:

— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;

— применение конденсаторов (выполняют роль компенсатора реактивной мощности);

— применение фильтров гармоник.

Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.

Подробнее о гармониках можно указать из следующего видео:

Негативные последствия гармонических токов:

— перегрузка в распределительных сетях;

— перегрузка в нейтралях;

— перегрузка трансформаторов, генераторов, двигателей, что вызывает преждевременное старение оборудования;

— шум, вибрации, как следствие – механические разрушения неправильно работающих электроприводов;

— снижение надежности электронной части, повышение вероятности выхода ее из строя;

— помехи в линиях связи, коммуникационном оборудовании, записывающих устройствах.

Экономические последствия гармонических токов:

— внеплановые ремонт или замена оборудования;

— увеличение расхода электроэнергии за счет потерь;

— останови техпроцесса из-за ложных срабатываний автоматических выключателей;

— убытки, нанесенные в результате КЗ (остановка производства, ремонт, ликвидация пожара).

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Пятая гармоника имеет частоту в пять раз выше частоты основной гармоники. На рисунке отметки с цифрами.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Смотрите также другие статьи :

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий