Что такое проводники, полупроводники и диэлектрики Что такое проводники, полупроводики и диэлектрики: определение и характеристики, зонная теория, описание материалов под действием тока. Опубликовано: 14.10.2021Рубрика: Что такое проводники, полупроводники и диэлектрики
Знакомство с проводниками, полупроводниками и диэлектриками: технические характеристики
Что главное в материалах, которые используются для электричества? Главным их свойством является токопроводимость. Такие материалы делятся на три вида — проводники, полупроводники, диэлектрики.
Сегодняшняя статья посвящена именно этим материалам. Мы подробно рассмотрим что они из себя представляют, для чего используются и каким образом пропускают ток.
Итак, начнем с проводника
Проводник — это материя, которая состоит из свободных носителей заряженных частиц. При движении этих частиц возникает тепловая энергия, поэтому ему дали название — тепловое движение.
Есть два основных параметра проводника — сопротивление, обозначается буквой R или же проводимость, обозначается буквой G. Проводимость это показатель противоположный сопротивлению — G=1/R.
То есть проводник — это материал, который ведет ток.
Что же является проводником. Металлы — лучшие проводники, особенно медь и алюминий. Также проводниками являются солевые растворы, влажный грунт, углерод. Последний нашел широкое применение в работе со скользящими связями.
Примером такого применения являются щетки в электрическом двигателе. Человеческое тело — тоже проводник электрического тока. Но электропроводные свойства у вышеперечисленных материалов все же ниже, чем в металлах.
Сама структура металлов предполагает в себе огромное количество свободных заряженных частиц, что и делает их лучшими проводниками.
Когда металл попадает под действие электрических полей, то происходит процесс так называемой электроиндукции. То есть заряженные частицы начинают активно двигаться и распределятся.
Перейдем к диэлектрикам
Диэлектрик — это материя, которая не подчиняется воздействию электрического поля, то есть не пропускает через себя ток, а если и пропускает, то в незначительном количестве.
Происходит это потому, что они не обладают свободно передвигающимися частицами — носителями тока, поскольку в них очень сильная атомная связь.
В жизни такими веществами выступают резина, керамические компоненты, стекло, отдельные виды смол, дистиллированная вода, карбонит, фарфор, текстолит, а так же сухое дерево и так далее.
Именно благодаря свои свойствам, вышеперечисленные материалы являются основой корпусов различных электрических приборов, выключателей, розеток, вилок и других приспособлений, которые контактируют с электричеством непосредственно.
Изоляционные элементы в сетях также изготовляются из диэлектрических материалов.
Но, не все так просто и с диэлектриками. Если пропускать через них ток выше нормы, хранить их или устанавливать в среде с высокими показателями влажности или неправильно их использовать, то можно вызвать такое явление, как «пробой изолятора» — это означает, что материал диэлектрика теряет свои токонепроводимые функции и становится проводником.
То есть, если в двух словах описать ситуацию, то основное в диэлектрике — это его электроизоляционные способности. Таким образом эти приборы помогают нам защититься от травмирующего воздействия электричества.
Свойства диэлектрика измеряются его электрической прочностью — это показатель, который равняется с напряжением пробоя диэлектрика.
И наконец мы дошли до полупроводников
Полупроводники называются так, потому что у них есть свойство проводить ток, но не всегда. Для этого данному веществу необходимо создать специальные условия. Нужно подать к нему энергию в определенным количестве.
Свои свойства полупроводник имеет потому, что в его структуре очень мало частиц, являющихся свободными носителями, а может быть такое, что их там вовсе нет. Но, стоит повлиять на них определенной энергией — и они появляются и активно двигаются.
Энергия может быть не только электрической, также можно воздействовать тепловой энергией, или различными излучениями. Например, свободно движущиеся элементы появляются при влиянии излучения в УФ-Спектре.
Материалами с такими свойствами являются германий, кремний, так же это может быть смешение арсенида и гелия, мышьяк, селен и прочие.
Применение полупроводников может быть различное. Из данного материала делают микросхемы, светодиоды, транзисторы, диоды и многое другое.
Для того, чтоб более подробно объяснить работу полупроводника, применим к нему так называемую зонную теорию. Упомянутая теория объясняет существование или неимение свободных заряженных частиц в отношении конкретных энергетических уровней.
Энергетический уровень (слой) — это число простых частиц, таких как молекул, атомов, то есть электронов. Данный показатель измеряется в Электронвольтах (ЭВ).
Следует обратить внимание на то, что слои проводника составляют непрерывную диаграмму от зоны валентности и до зоны проводимости. Если эти две зоны осуществляют накладку друг на друга, то возникает зона перекрытия.
В соответствии с влиянием некоторых влияний, например электрических полей, температурного режима и прочего, число электронов может меняться.
Исходя из вышеописанных процессов электроны при минимальной энергетическом воздействии начинают движение в проводнике.
Полупроводники между двумя вышеупомянутыми зонами имеют еще зону запрещенную. Величина данной зоны показывает количество той энергии, которой будет достаточно для проведения тока.
Диэлектрики по структуре похожи на полупроводники, но их защитный шар намного больше благодаря внутренним связям материала.
Мы рассказали о главных свойствах проводников, полупроводников и диэлектриков. Можно сделать вывод, что отличаются они друг от друга своей проводимостью тока. Именно из-за этого у каждого материала есть своя зона применения.
Так, проводники применяются там, где нужна стопроцентная проводимость тока.
Использование диэлектриков приходится на изготовление различной изоляции токопроводящих участков.
Ну, а полупроводники активно применяют в электронике.
Думаем, данная статья раскрыла перед вами все нюансы работы проводников, диэлектриков и полупроводников, их основные отличия и сферы применения.
Проводники, изоляторы и полупроводники
Любое тело состоит из молекул и атомов. Атом включает в себя отрицательно заряженные электроны и положительно заряженное ядро. Электроны в атоме совершают орбитальные вращения вокруг ядра. В том случае, если сумма отрицательно заряженных электронов равна положительному заряду, то атом считается . В таблице Менделеева порядковый номер элемента определяется числом электронов атома с нейтральным зарядом. Электрический заряд электрона равен -1,6*10 -19 Кл. Заряд ядра по абсолютному значению равен заряду электрона, умноженному на число электронов атома с нейтральным зарядом.
Электроны атомов, как правило, расположены на внешних или внутренних орбитах. Те электроны, что расположены на внутренних орбитах, относительно прочно связываются с ядром атома. Валентные электроны, т.е. те, которые находятся на внешних орбитах, могут отрываться от атома и находиться в «свободном» состоянии до тех пор, пока не присоединятся к новому атому. Атом, у которого отсутствует какое-либо количество электронов называется ионом с положительным зарядом. А вот атом, к которому присоединились электроны, называется ионом с отрицательным зарядом.
— это упорядоченное движение положительно и отрицательно заряженных частиц.
Чем выше концентрация носителей заряда в веществе, тем больше его электропроводность. В зависимости от способности проводить электрический ток, вещества разделяют на 3 группы: проводники, полупроводники и диэлектрики.
Проводники электрического тока
— Проводников бывает 2 типа: с электронной проводимостью и ионной проводимостью. К электронной проводимости относятся металлы и их сплавы. В металлах электрический ток создается перемещением электронов. Проходящий через такие проводники ток никак не сказывается на материале и не изменяет его химическую составляющую.
Высокий уровень электропроводности металлов обусловлен тем, что в них много «свободных» электронов, находящихся в состоянии беспорядочного движения и заполняющие объём проводника словно газ. При таком активном движении электроны сталкиваются с ионами неподвижной кристаллической решётки, состоящей из атомов вещества. В следствии чего электроны изменяют направление движения, скорость и свою кинетическую энергию.
Если в проводнике 1-го типа есть электрическое поле, то на заряды проводника действуют силы этого поля, упорядочивая их движение. Свободные электроны двигаются не в хаотическом порядке, а в одном направлении противоположно направлению поля (от минусовой клеммы к плюсовой). Данное упорядоченное движение свободных носителей заряда под действием электрического поля является — электрическим током (проводимости).
Проводники 2-го типа представляют собой растворы или расплавы солей, кислот, щелочей и т. п. в которых наблюдается электролитическая диссоциация.
—
Положительные ионами выступают водород и ионы металлов. Отрицательные — гидроксильная группа и кислотные остатки.
Без воздействия внешнее электрическое поля, молекулы и ионы такого проводника будут находиться в состоянии хаотического движения.
При возникновении в таком проводнике электрического поля, движение ионов приобретает направленное упорядоченное движение, т. е. через проводник протекает ток (проводимости). Положительные ионы двигаются по направлению поля, а отрицательные против.
Полупроводники
— К таким материалам относят: кремний, теллур, германий, селен, соединения металлов с серой и окислы металлов. Полупроводники отличаются еще и тем, что кроме электронной проводимости имеют и дырочную электропроводность. Дырочная электропроводность вызывается движением «дырок» из-за влияния электрического поля. «Дырки» — это свободные места в атомах, которые не заняты валентными электронами. Это подобно тому, что положительно заряженные частицы перемещаются так же, как и заряды, равные зарядам электронов. На сегодняшний день, использование полупроводников широко распространено в разных устройствах и приборах, например, в фоторезисторах и полупроводниковых диодах.
Электрические диэлектрики
— К диэлектрикам относятся газы, минеральные масла, лаки и твердые материалы (кроме металлов). Однако, если на диэлектрик будет действовать высокая температура или сильное электрическое поле, то начнется расщепление молекул на ионы, которые потеряют вследствие этого воздействия свои изолирующие свойства.
Что такое проводники, полупроводники и диэлектрики
- Что такое проводник
- Что такое диэлектрик
- Что такое полупроводник
- Зонная теория
Что такое проводник
Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.
К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.
Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.
Что такое диэлектрик
Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.
Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.
Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.
Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.
Что такое полупроводник
Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.
Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.
Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.
Зонная теория
Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).
На изображении ниже показаны три вида материалов с их энергетическими уровнями:
Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.
У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.
У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.
Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.
Напоследок рекомендуем просмотреть полезное видео по теме:
Наверняка вы не знаете:
Что такое проводник и диэлектрик?
Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.
Что представляют собой проводники?
Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.
Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.
Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.
Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:
- показатель сопротивления;
- показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность.
Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.
Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.
Что представляют собой диэлектрики?
Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.
Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.
Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.
Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.
Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.
Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.
Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).
Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.
Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.
Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.
Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.
Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.
Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.
Что такое полупроводник?
Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.
С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.
Полупроводниками являются кремний и германий.
Проектируем электрику вместе
Проводники и диэлектрики. Полупроводники
Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.
Проводники
Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.
Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.
Все проводники обладают такими свойствами, как и . Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).
G = 1/ R
То есть, проводимость –
Нужно понимать, что представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, . Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет б льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.
Диэлектрики
В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.
К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.
Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.
О применении проводников и изоляторов
Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.
К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.
Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.
Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.
Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.
Существуют вещества,
Такие вещества называют Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.
В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости — уменьшается.
При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.
Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры
Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».
Статьи по теме: 1. Что такое электрический ток?
2. Постоянный и переменный ток
3. Взаимодействие электрических зарядов. Закон Кулона
4. Направление электрического тока
5. О скорости распространения электрического тока
6. Электрический ток в жидкостях
7. Проводимость в газах
8. Электрический ток в вакууме
9. О проводимости полупроводников
Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Сайт посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.
В чём отличие проводников от диэлектриков, их свойства и сфера применения
Проводники и диэлектрики — физические вещества, имеющие различную степень электропроводимости и по-разному реагирующие на воздействие электрического поля. Противоположные свойства материалов широко используются во всех сферах электротехники.
Что такое проводники и диэлектрики
Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:
- металлы и их расплавы;
- природный углерод ();
- электролиты — растворы солей, кислот и щелочей;
- ионизированный газ ().
Главное свойство материалов : свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.
Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики () — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.
В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.
Характеристики и физические свойства материалов
Параметры проводников определяют область их применения. Основные физические характеристики:
- удельное электрическое сопротивление — характеризует способность вещества препятствовать прохождению электрического тока;
- температурный коэффициент сопротивления — величина, характеризующая изменение показателя в зависимости от температуры;
- теплопроводность — количество тепла, проходящее в единицу времени через слой материала;
- контактная разность потенциалов — происходит при соприкосновении двух разнородных металлов, применяется в термопарах для измерения температуры;
- временное сопротивление разрыву и относительное удлинение при растяжении — зависит от вида металла.
При охлаждении до критических температур удельное сопротивление проводника стремится к нулю. Это явление называется сверхпроводимостью.
Свойства, характеризующие проводник:
- электрические — сопротивление и электропроводимость;
- химические — взаимодействие с окружающей средой, антикоррозийность, способность соединения при помощи сварки или пайки;
- физические — плотность, температура плавления.
Особенность диэлектриков — противостоять воздействию электротока. Физические свойства электроизоляционных материалов:
- диэлектрическая проницаемость — способность изоляторов поляризоваться в электрическом поле;
- удельное объёмное сопротивление;
- электрическая прочность;
- тангенс угла диэлектрических потерь.
Изоляционные материалы характеризуются по следующим параметрам:
- электрические — величина пробивного напряжения, электрическая прочность;
- физические — термостойкость;
- химические — растворимость в агрессивных средствах, влагостойкость.
Виды и классификация диэлектрических материалов
Изоляторы подразделяются на группы по нескольким критериям.
Классификация по агрегатному состоянию вещества:
- твёрдые — стекло, керамика, асбест;
- жидкие — растительные и синтетические масла, парафин, сжиженный газ, синтетические диэлектрики (кремний- и фторорганические соединения хладон, фреон);
- газообразные — воздух, азот, водород.
Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.
К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.
К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.
Почему диэлектрики не проводят электрический ток
Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.
В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:
- неполярные — вещества в различном агрегатном состоянии с электронной поляризацией (инертные газы, водород, полистирол, бензол);
- полярные — обладают дипольно-релаксационной и электронной поляризацией (различные смолы, целлюлоза, вода);
- ионные — твёрдые диэлектрики неорганического происхождения (стекло, керамика).
Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.
Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.
Где применяются диэлектрики и проводники
Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.
Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.
Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.
Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.
Жидкие диэлектрики используют в конденсаторах, силовых кабелях , циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.
Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.
Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.
Какая проводка лучше — сравнение медной и алюминиевой электропроводки
Что такое конденсатор, виды конденсаторов и их применение
Какие существуют виды источников электрического тока?
Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле
Что такое нихромовая проволока, её свойства и область применения
Источник: