Что такое сервопривод и как он работает
Сервопривод — схема, характеристики, назначение
Сервопривод – механизм, позволяющий устанавливать и фиксировать рабочий орган оборудования в заданных положениях, перемещать его в соответствии с заданной программой. Перемещение не единственная задача устройств, они могут поддерживать необходимый момент на валу при нулевой скорости вращения вала. Это используется для удержания исполнительного механизма в одном положении под нагрузкой.
Сервоприводы устанавливают на станках с ЧПУ, грузоподъемных механизмах, промышленных роботах. Сфера применения сервопривода не ограничивается производством. Механизмы применяют в бытовой технике, системах отопления и кондиционирования, автотранспорте.
Конструкция
Конструкция сервоприводов может существенно различаться в зависимости от назначения. Однако, вне зависимости от области применения устройства содержат следующие узлы:
- Передаточный механизм.
- Электродвигатель.
- Датчики положения и скорости вращения вала.
- Частотный преобразователь.
- Контроллер.
Передаточный механизм служит для изменения скорости и момента на валу, к нему непосредственно подключается рабочий инструмент или исполнительное устройство. В ряде случаев передаточные механизмы обходятся дешевле безредукторного регулирования.
Электродвигатель – силовой элемент привода. Энергия вращения вала преобразуется в перемещение исполнительных устройств или инструментов.
Датчики служат для передачи на схему управления сигнала о положении вала или исполнительного механизма, частоты его вращения, момента.
Частотный преобразователь применяется для изменения частоты вращения, момента на валу двигателя путем изменения частоты тока или напряжения питания электродвигателя.
Контроллер предназначен для задания режимов работы привода, обработки сигналов с датчиков обратной связи, управления положением исполнительного механизма. Этот элемент нередко объединен с преобразователем частоты. Существуют специализированные ПЧ с интегрированными контроллерами для управления серводвигателями.
Принцип работы сервоприводов
Работает устройство следующим образом. Контроллер программируется на определенный режим работы и выдает сигнал на преобразователь частоты. Устройство подает на электродвигатель напряжение необходимой частоты и величины. Силовой агрегат перемещает исполнительный механизм с заданной скоростью и моментом, соответствующим нагрузке. По достижении заданного положения рабочего органа, подается соответствующий сигнал с датчиков положения на контроллер, который останавливает двигатель.
Принцип действия сервопривода идентичен автоматическому регулятору с отрицательной обратной связью. Задается опорный сигнал, называемый нулевым, с которым сравнивается сигнал с датчика положения. При равенстве их величин, сервопривод останавливается, при отклонениях в отрицательную или положительную сторону, на двигатель подается напряжение пока рабочий инструмент или исполнительное устройство не займет требуемого положения.
Виды сервоприводов
Сервоприводы различают по типу применяемого двигателя, передаточного механизма, назначению и техническим параметрам.
В качестве силовых агрегатов в устройствах используют:
- Двигатели постоянного тока.
- Асинхронные электрические моторы.
- Синхронные двигатели с обмотками статора или на постоянных магнитах.
Дополненная классификация двигателей сервоприводов представлена на рисунке:
К двигателям для современных сервоприводов предъявляют следующие требования:
- Высокая точность отработки управляющего сигнала. Электрические машины должны обладать низкой инерцией, иметь неизменные механические характеристики во всем диапазоне регулирования скорости.
- Обеспечивать неравномерность частоты вращения. Часть технологического оборудования регулируется по нелинейным законам, двигатель должен обеспечить их реализацию с минимальными ошибками.
- Иметь достаточную перегрузочную способность. Двигатель не должен перегреваться, выходить из строя при превышении нагрузки на валу.
- Обеспечивать высокую динамику. Скорость реакции силового агрегата сервопривода должна быть достаточной для нормального функционирования оборудования.
- Управляться как можно более простыми алгоритмами. Цена контроллера и ПО составляет значительную часть стоимости сервопривода. Упрощение управления без ущерба характеристикам позволяет снизить стоимость электроники.
В первых сервоприводах применялись электродвигатели постоянного тока с аналоговыми тахогенераторами, тиристорными или транзисторными преобразователями напряжения. Широкое использование таких электрических машин связано с относительно простым управлением. Скорость вращения напрямую зависит от величины напряжения, подаваемого на якорь, жесткость механических характеристик сохраняется во всем диапазоне угловой частоты ротора.
К недостаткам сервоприводов относятся: необходимость установки выпрямителя с преобразователем напряжения, высокая цена двигателей, наличие коллекторного узла, снижающего надежность схемы.
С появлением преобразователей частоты стало возможным применение в сервоприводах асинхронных двигателей. ПЧ с микроконтроллером позволяет реализовать практически любые законы регулирования с обратной связью по относительному и абсолютному положению ротора, моменту и скорости вращения.
Главное преимущество сервоприводов с асинхронными двигателями – относительно низкая цена. При значительных мощностях такие устройства намного дешевле сервоприводов с электродвигателями постоянного тока.
Следующий тип силовых агрегатов – синхронные двигатели. С появлением современных материалов для постоянных магнитов, которые не теряют свойств при нагреве и ударах, наибольшее распространение для сервоприводов получили синхронные электродвигатели на постоянных магнитах или СДПМ.
Главное достоинство таких электрических машин – маленькие размеры. Так, двигатель той же мощности синхронного типа с роторными обмотками имеет габариты в 2 раза превышающие размеры СДПМ.
Кроме того, такие электродвигатели:
- Обладают высоким к.п.д. во всем диапазоне скоростей вращения.
- Имеют возможность поддерживать заданный момент на валу независимо от нагрузки.
- Отличаются относительно простой конструкцией.
- Обладают невысокой инерцией.
В СДМП отсутствуют потери на возбуждение. Сфера применения электрических машин – сервоприводы малой и средней мощности, в том числе с очень высокими требованиями к стабильности скорости вращения.
Сфера применения сервоприводов
Оборудование применяется в различных автоматических устройствах и установках. Сервоприводы устанавливают:
- В промышленных роботах и манипуляторах.
- В грузоподъемном и упаковочном оборудовании.
- В автоматизированных станках.
- В особо точных исполнительных механизмах систем автоматического регулирования технологических параметров.
- В автоматических автомобильных трансмиссиях.
Сервоприводы позволяют повысить точность и производительность промышленного оборудования, автоматизировать производственные процессы, исключить влияние человеческого фактора.
Функции современных сервоприводов
Большинство сервоприводов поставляют в виде готовых систем сервоусилитель-датчик- двигатель. Крупные производители, например Mitsubishi Electric, Schneider Electric предлагают сервисы выбора совместимых элементов.
Современные сервоприводы обеспечивают не только точное полеориентированное управление. Устройства:
- Могут встраиваться в АСУТП любой сложности, а также поддерживают автономное управление. Оборудование обеспечивает связь по унифицированным цифровым, аналоговым сигналам, безпотенциальным контактам, интерфейсам CANopen, PROFIBUS DP, RS 485, DeviceNet, EtherCAT, Modbus TCP, Ethernet Powerlink и другим.
- Легко осваиваются пользователями. Настройка устройств не представляет сложности, управление имеет интуитивно понятный интерфейс. Сервоприводы уже укомплектованы заводским ПО, имеет функции автоматического распознавания внешнего оборудования. При необходимости можно скачать нужные программы или обновить их с сервера производителя.
- Можно масштабировать и модернизировать. Ряд сервоприводов промышленного назначения имеет отрытую архитектуру. Оборудование легко адаптируется путем установки дополнительных элементов: датчиков, модулей и других.
- Имеют защиту от ненормальных режимов работы. Сервоприводы обеспечивают отключение при превышении допустимого значения тока, колебаний или отключения напряжения в сети, перегрузок при динамическом торможении. Оборудование также имеет защиту от перегрева электродвигателя, ошибок датчика, превышения допустимого рассогласования. Для поиска причины возникновения ненормального режима сервоприводы автоматически записывают время и дату аварии, код предположительной причины.
Современные сервосистемы отличаются разнообразием. Выпускают устройства для несложного оборудования с алгоритмом управления по 1оси, до сложных роботов с многоосевым управлением.
Как выбрать сервопривод
Сервоприводы выбирают по техническим характеристикам, экономического и технического эффекта. Выбор делают после тщательного анализа технологических требований, расчетов эффективности и надежности.
Один из главных параметров устройств – точность позиционирования. Она не должна превышать предельную погрешность положения исполнительных механизмов или перемещения рабочего инструмента. Точность определяется количеством импульсов с датчиков на 1 оборот вала. Чем их больше, тем точнее обеспечивается положение вала.
При выборе необходимо обратить внимание на диапазон регулирования скорости и момента на валу. Параметры подбирают по требованиям оборудования. Например, сервопривод автоматизированных станков должен обеспечивать требуемую скорость обработки для того или иного материала. Момент вала на валу выбирают по характеру и величине нагрузки. Для исключения перегрузок лучше прибрести сервопривод привод с небольшим запасом мощности двигателя.
Кроме точности позиционирования, диапазона изменения момента и скорости, также учитывают:
- Тип поддерживаемых интерфейсов обмена данными. Протоколы должны соответствовать информационным интерфейсам автоматизированной системы. Сервоприводы поддерживают самые распространенные протоколы обмена информацией. В модульных устройствах можно устанавливать дополнительные блоки связи.
- Скорость отклика. Один из самых главных параметров , характеризующих время между выработкой сигнала управления и его полной отработкой. Скорость отклика также должна отвечать требованиям оборудования или механизма.
- Исполнение. Класс защиты от влаги пыли, тип охлаждения выбирают исходя из предполагаемых условий эксплуатации.
- Электрические параметры. Номинальное напряжение, потребляемый ток, выбирают по возможностям и виду электросети.
- Дополнительным функциям. Современные сервоприводы выполняют функции отключения при авариях, предупреждений при ненормальных режимов работы, ведения журнала и многие другие.
От привода зависит работоспособность технологических установок, оборудования, станков. Производители промышленной приводной техники оказывают услуги выбора сервоприводов с учетом всех требований. Рекомендуется воспользоваться этим предложением.
Современные сервоприводы обеспечивают управление по законам любой сложности с точностью перемещения до сотых долей микрон. Оснащение устройствами промышленного оборудования дает очень весомый экономический эффект. Сервоприводы также позволяют существенно расширить возможности и увеличить точность станков, дозаторов, манипуляторов, а также автоматизировать работу устройств.
Что такое сервопривод, как он работает и как им управлять?
Вряд ли сегодня кого-то можно удивить тем количеством электрических приборов, которые окружают человека в повседневной жизни. Многие из которых давно взяли на себя часть человеческого труда и обязанностей. Повсеместная автоматизация процессов охватила самые разнообразные отрасли, начиная автомобилестроением, и заканчивая устройствами в быту. Львиную долю нагрузки относительно автоматического управления параметрами работы умных машин берет на себя сервопривод.
Что такое сервопривод?
Под сервоприводом следует понимать такое устройство, которое обеспечивает возможность управления рабочим органом посредством обратной связи. Само название произошло от латинского servus, что в переводе означает помощник. Изначально сервопривод использовался в качестве вспомогательного оборудования для различных станков, машин и механизмов. Однако с развитием технологий и постоянно растущей необходимостью повышать точность электронных устройств им начали отводить куда более значимую роль.
Устройство и принцип работы
Устройство и принцип работы каждого сервопривода может кардинально отличаться от других моделей. Однако в качестве примера мы рассмотрим наиболее актуальные варианты.
Конструктивно он может состоять из:
- Привода – устройства, приводящего в движение рабочий орган. Может выполняться посредством синхронного или асинхронного двигателя, пневмоцилиндра и т.д.
- Передаточный механизм – система шестеренчатой кривошипной или другой передачи, редуктор.
- Рабочий элемент – управляет перемещением в пространстве, непосредственно вал редуктора, передаточный механизм и т.д.
- Датчик – сигнализирует о достигнутом положении и передает информацию по каналу обратной связи.
- Блок питания – может применяться в случае прямого подключения сервопривода к сети, где требуется преобразование уровня и типа напряжения.
- Блок управления – осуществляет подачу управляющих сигналов на сервомотор для передвижения или корректировки места положения. Для этого применяются микропроцессоры, микроконтроллеры и т.д. К примеру, очень популярна плата Arduino.
Принцип действия заключается в подаче управляющего импульса на асинхронный или синхронный двигатель, который начинает вращаться, пока рабочий орган не окажется в нужной позиции. Как только будет достигнуто установленное положение, на датчике обратной связи появится нужный сигнал, который, перейдя на блок управления, прекратит питание электромеханического устройства. Движение сервопривода прекратится до появления новых электрических сигналов.
Далее начнется новый цикл работы устройства, число команд и последовательность их выполнения определяется заложенной программой.
Сравнение с шаговым двигателем
Вполне вероятно вы могли слышать, что та же функция часто выполняется шаговыми двигателями, однако между этими двумя устройствами имеется существенное отличие. Шаговый привод действительно осуществляет точное позиционирование объекта за счет четкого числа подаваемых на электрическую машину импульсов, они достаточно тихоходны и не создают лишнего шума. В остальном сервоприводы обладают рядом весомых преимуществ по сравнению с шаговыми электродвигателями:
- Могут использовать для привода любой тип электрической машины – синхронный, асинхронный, электродвигатель постоянного тока и т.д.
- Точность механического привода не зависит от износа деталей, появления люфтов, термических и механических изменений конструктивных элементов.
- Диагностирование неисправностей происходит моментально за счет обратной связи.
- Скорость вращения – любой обычный электродвигатель вращается быстрее шагового привода.
- Экономичность – вращение вала у шаговой электрической машины осуществляется при максимально допустимом напряжении питания, чтобы обеспечить максимальный момент.
Но кроме перечисленных преимуществ есть ряд позиций, по которым сервопривод уступает шаговому двигателю:
- Сложность системы управления и необходимость реализации ее работы – шаговый двигатель контролируется обычным счетчиком числа импульсов.
- Необходимость контролировать как частоту вращения, так и принимать меры для принудительного затормаживания в нужной точке – это приводит к дополнительным затратам энергии, программных и механических ресурсов.
- Обязательно используется дополнительный измерительный блок, контролирующий положение рабочего органа.
- Сервопривод обладает значительно большей стоимостью, поэтому применение шагового двигателя обходится дешевле.
Назначение
Сервопривод используется в самых различных направлениях науки и техники, где электрический привод, помимо функции вращения каких-либо элементов, должен выполнить и точное позиционирование. На практике они повсеместно используются в ЧПУ станках, автоматических задвижках, электронных клапанах, заводских станках с программным управлением, робототехнике.
В бытовых системах сервомоторы устанавливаются в системах отопления для регулировки подачи теплоносителя, топлива, управления нагревательным элементом, контроля переключения между центральными и автономными системами энергетических ресурсов и т.д. В автомобилях их используют для отпирания, запирания багажника, электронных блокировок.
Разновидности
За счет многолетнего развития сервоприводов сегодня можно встретить самые различные виды устройства. Поэтому мы рассмотрим наиболее распространенные критерии разделения.
По типу привода:
- асинхронные сервоприводы – получаются дешевле, чем с синхронным электродвигателем, могут обеспечить точность даже при низких оборотах выходного вала;
- синхронные – более дорогой вариант, но быстрее разгоняется, что повышает скорость выполнения операций;
- линейные – не используют классических электрических моторов, но способны развивать большое ускорение.
По принципу действия выделяют:
- электромеханический сервопривод – движение обеспечивается электрической машиной и шестеренчатым редуктором;
- гидромеханический серводвигатель – движение осуществляется при помощи поршневого цилиндра, обладают значительно большей скоростью перемещения;
По материалу передаточного механизма:
- полимерные – износоустойчивые и легкие, но плохо переносят большие механические нагрузки;
- металлические – наиболее тяжелый вариант, относительно быстро изнашиваются, но могут выдерживать любые нагрузки;
- карбоновые – имеют средние характеристики по прочности и износоустойчивости, в сравнении с двумя предыдущими, но имеют более высокую стоимость.
Рис. 4. По материалу шестерней
По типу вала двигателя:
- с монолитным ротором – тяжелые сервоприводы, создают вибрацию при вращении;
- с полым ротором – самые легкие модели, быстро реагируют на команды и набирают обороты, их легче контролировать;
- с бесколлекторным ротором – не имеют подвижных контактов, которые создают дополнительное сопротивление вращению, наиболее дорогой вариант.
Рис. 5. По типу вала
Технические характеристики
При выборе конкретной модели сервопривода необходимо руководствоваться основными техническими параметрами, которые изготовитель указывает в паспорте устройства.
Наиболее значимыми характеристиками сервомотора являются:
- Усилие на валу серводвигателя – определяет механический момент и способность перемещать определенный вес, создавать усилие при резке, фрезеровке и т.д.
Рис. 6. Усилие на валу
- Скорость вращения – показывает, сколько поворотов вала может совершить устройство за единицу времени.
- Величина питающего напряжения – чаще всего электроснабжение сервопривода выполняется постоянным током, хотя встречаются модели и с переменным током выходного напряжения. Подключение питания к сервоприводу осуществляется тремя проводами: питающим, управляющим и общим.
- Угол вращения сервопривода – поворот выходного элемента, как правило, выпускается на 180° и 360°.
- Скорость поворота – подразделяется на сервоприводы с постоянным вращением и с переменной частотой.
Способы управления
По способу управления могут быть аналоговые или цифровые сервоприводы, первый из них подает сигналы с разной частотой, которая задается специальной микросхемой, контролирующей работу устройства. Цифровые сервоприводы, в свою очередь, отличаются наличием процессора, который принимает команды и реализует их в качестве различных режимов работы на приводе.
Их практическое отличие заключается в наличии мертвых зон у аналоговых способов, цифровые лишены этого недостатка, к тому же они быстрее реагируют на изменения и обладают большей точностью. Однако цифровой способ управления имеет большую себестоимость и на свою работу он расходует больше электроэнергии.
На рисунке 8 приведен пример управления сервоприводом с помощью подаваемых импульсов:
Рис. 8. Схема управления сервоприводом
Как видите на рисунке, сигнал поступает к генератору опорных импульсов (ГОП), подключенному к потенциометру. Далее сигнал поступает на компаратор (К), сравнивающий величины на выходе схемы и поступающие от датчика на рабочем органе. После этого прибор управления мостом (УМ) открывает нужную пару транзисторов моста для вращения вала мотора (М) по часовой или против часовой стрелки, также может задавать усилие за счет полного или частичного открытия перехода.
Преимущества и недостатки
К преимуществам сервопривода следует отнести:
- Универсальность устройства – может с легкостью устанавливаться в самые различные приборы, так как технические особенности редко влияют на конечный результат.
- Может реализовать широкий спектр крутящего момента за счет использования редуктора и изменения передаточного числа.
- Обладает большим ускорением, что значительно повышает продуктивность и сокращает сроки выполнения работы.
- Точное выставление позиции благодаря проверке места положения на датчике.
- Не боится перегрузок, что увеличивает срок службы, позволяет работать и в аварийных ситуациях.
К недостаткам следует отнести:
- Относительно большую стоимость – наличие обратной связи, датчиков и прочего вспомогательного оборудования обуславливает повышение себестоимости сервопривода.
- Износ передаточного механизма – в значительной мере ухудшает точность и эффективность, требует замены.
- Более сложная настройка работы – требует изменения параметров программного обеспечения или полной замены сервопривода.
Как устроен и работает сервопривод
Слаботочные сервоприводы под управлением ардуино (micro servo motor) широко применяются сегодня в любительской робототехнике, на их основе делают небольшие настольные станки и множество других интересных и полезных в хозяйстве вещей. Даже просто на уровне хобби такие сервоприводы находят массу разнообразных применений. Давайте посмотрим, что же такое сервопривод в простейшем виде, как он принципиально устроен и как работает.
Само слово «сервопривод» можно перевести как «следящий привод». То есть это такое приводящее устройство, которое содержит в себе двигатель, управляемый посредством отрицательной обратной связи, что позволяет осуществлять точные движения с выверенным позиционированием рабочего органа.
В принципе сервоприводом можно назвать электродвигатель, в системе управления которым имеется датчик положения рабочего устройства (или просто вала), текущие параметры с которого определяют то, как, куда и на сколько должен или не должен повернуться ротор мотора для получения нужного результата. Обычно в такой системе имеется блок управления приводом, который анализирует параметры с датчика, и в соответствии с ними управляет питанием двигателя.
Таким образом, сервопривод хотя и работает автоматически, процесс позиционирования рабочего органа оказывается при этом очень точным благодаря правильной обработке сигнала с датчика платой управления. Например целью управления может быть просто поддержание определенного значения конкретного параметра упомянутого датчика. Вот и становится понятно, почему привод называется следящим — он следит за состоянием датчика.
Двигатель с установленным редуктором может иметь всего три или четыре провода, идущих от него. По двум проводам подается питание на двигатель, с третьего — снимается сигнал от датчика, четвертый может быть предназначен для питания датчика.
Обычно провода питания имеют красный и черный или красный и коричневый цвета — это плюсовой и минусовой (земля) провода питания. Белый или желтый — сигнальный провод с датчика, через этот провод на плату управления приходит сигнал обратной связи о текущем состоянии системы.
Простой сервопривод с редуктором (сервомашинка) и потенциометром — замечательный пример для того чтобы понять принцип работы обратной связи в системе управления сервоприводом.
Потенциометр имеет три вывода. На те выводы что по бокам — подается питание, а средний по сути — выход с резистивного делителя напряжения. Если изменить положение ручки потенциометра, то величина напряжения между минусом питания и средним его выводом измениться пропорционально изменению сопротивления между минусом и средним выводом.
Допустим, в крайнем левом положении напряжение на среднем выводе потенциометра будет минимальным, а в крайнем правом — максимальным. Получается что напряжение на среднем выводе потенциометра определяется положением его ручки, то есть тем, на какой угол она повернута от исходного положения, в котором напряжение на среднем выводе минимально. Обычно используют потенциометры с номинальным сопротивлением 5-10 кОм.
И как же здесь работает сервопривод? Ручка потенциометра в данном сервоприводе через редуктор соединена с валом двигателя. Значит, когда двигатель работает и его ротор вращается, ручка потенциометра поворачивается и следовательно сопротивление на среднем его выводе изменяется.
В крайнем левом положении, например, на среднем выводе будет 0 вольт, в среднем положении — 2,5 вольт, а в крайнем правом — 5 вольт. Для упрощения примем, что ручка потенциометра способна вращаться вокруг своей оси на 180 градусов, значит 2,5 вольта на среднем выводе будет соответствовать повороту ручки на 90 градусов.
Если плата управления получает информацию, что на среднем выводе 5 вольт, а необходимо создать поворот до 90 градусов, то к двигателю начнет автоматически подаваться питание определенной полярности до тех пор, пока он, поворачивая выход редуктора (а в месте с ним и ручку потенциометра) справа — налево, не доведет потенциометр до требуемого положения. Как только на среднем выводе потенциометра станет 2,5 вольт, двигатель прекратит получать питание от платы управления.
Аналогичным образом будет реализован поворот в другую сторону: если на среднем выводе 0 вольт, то полярность питания двигателя будет такой, что ручка потенциометра станет поворачиваться через редуктор слева — направо, пока напряжение не достигнет 2,5 вольт, соответствующих повороту ручки на 90 градусов. Это достаточно грубый пример, зато он достаточно нагляден.
Редуктор здесь необходим для того, чтобы высокие обороты вала маломощного мотора преобразовать в малые обороты с большим усилием, что позволит, во-первых, провернуть потенциометр, во-вторых, сделать это медленно и точно. Редуктор состоит из шестеренок, на валу двигателя находится маленькая, которая вращает большую, в центре которой маленькая и т. д.
Сервоприводы характеризуются несколькими главными параметрами. Первый главный параметр — усилие на валу (вращающий момент, деленный на ускорение свободного падения), которое измеряется у маленьких моделей в кг/см и определяется при номинальном напряжении питания мотора. Например, вращающий момент в 10 кг/см означает, что при расстоянии до оси выходного вала в 1 см, на нем можно удержать груз массой 10 кг.
Второй немаловажный параметр — скорость поворота, которая указывается в сек/60 градусов. Этот параметр показывает, сколько времени требуется сервоприводу для поворота его выходного вала на 60 градусов. Например 0,2сек/60 градусов. Далее идут такие параметры как напряжение питания, угол вращения (180 или 360 градусов) и тип редуктора (материал шестерней).
Сервопривод
В конструкциях оборудования, создаваемого на базе высоких технологий, постоянно развиваются и совершенствуются различные автоматические процессы. Среди них широкое распространение получил сервопривод, устанавливаемый с целью совершения отдельными элементами и деталями постоянных динамических движений. Эти устройства обеспечивают постоянный контроль над углами поворота вала, устанавливают нужную скорость в приборах электромеханического типа.
Составной частью этих систем являются серводвигатели, которые дают возможность управлять скоростями в нужном диапазоне в установленный промежуток времени. Таким образом, все процессы и движения могут периодически повторяться, а частота этих повторов закладывается в системе управления.
- Устройство сервопривода
- Как работает сервопривод
- Управление серводвигателем
- Виды и характеристики
- Плюсы и минусы сервомоторов
Устройство сервопривода
Основные детали, из которых состоит типовой серводвигатель – ротор и статор. Для коммутации применяются специальные комплектующие в виде штекеров и клеммных коробок. Управление, контроль и коррекция процессов осуществляется с помощью отдельного управляющего узла. Для включения и выключения сервопривода используется отдельная система. Все детали, помещаются в общем корпусе.
Практически во всех сервоприводах имеется датчик, работающий и отслеживающий определенные параметры, такие как положение, усилие или скорость вращения. С помощью управляющего блока поддерживается автоматический режим необходимых параметров при работе устройства. Выбор того или иного параметра происходит в зависимости от сигналов, поступающих от датчика в установленные промежутки времени.
Разница между сервоприводом и обычным электродвигателем заключается в возможности установки вала в точно заданное положение, измеряемое в градусах. Установленное положение, так же, как и другие параметры, поддерживаются блоком управления.
Их принцип работы заключается в преобразовании электрической энергии в механическую, с помощью электродвигателя. В качестве привода используется редуктор, позволяющий снизить скорость вращения до требуемого значения. В состав данного устройства входят валы с шестернями, преобразующими и передающими крутящий момент.
Как работает сервопривод
Вращение выходного вала редуктора, связанного шестернями с сервоприводом, осуществляется путем запуска и остановки электродвигателя. Сам редуктор необходим для регулировки числа оборотов. Выходной вал может быть соединен с механизмами или устройствами, которыми необходимо управлять. Положение вала контролируется с помощью датчика обратной связи, способного преобразовывать угол поворота в электрические сигналы и на котором построен принцип работы всего устройства.
Этот датчик известен также, под названием энкодера или потенциометра. При повороте бегунка, его сопротивление будет изменяться. Изменения сопротивления находится в прямой пропорциональной зависимости с углом поворота энкодера. Данный принцип работы позволяет устанавливать и фиксировать механизмы в определенном положении.
Дополнительно каждый серводвигатель имеет электронную плату, обрабатывающую внешние сигналы, поступающие от потенциометра. Далее выполняется сравнение параметров, по результатам которого производится запуск или остановка электродвигателя. Следовательно, с помощью электронной платы поддерживается отрицательная обратная связь.
Подключить серводвигатель можно с помощью трех проводников. По двум из них подается питание к электродвигателю, а третий служит для прохождения сигналов управления, приводящих вал в определенное положение.
Предотвратить чрезмерные динамические нагрузки на электродвигатель возможно с помощью плавного разгона или такого же плавного торможения. Для этого применяются более сложные микроконтроллеры, обеспечивающие более точный контроль и управление позицией рабочего элемента. В качестве примера можно привести жесткий диск компьютера, в котором головки устанавливаются в нужную позицию с помощью точного привода.
Управление серводвигателем
Основное условие, чтобы серводвигатель мог нормально работать, заключается в их функционировании совместно с так называемой системой G-кодов. Эти коды представляют собой набор команд управления, заложенный в специальную программу.
Если в качестве примера взять ЧПУ – числовое программное управление, то в данном случае сервоприводы будут взаимодействовать с преобразователями. В соответствии с уровнем входного напряжения они способны изменить значение напряжения на возбуждающей обмотке или якоре электродвигателя.
Непосредственное управление серводвигателем и всей системой осуществляется из одного места – блока управления. Когда отсюда поступает команда на прохождение определенного расстояния по оси координат Х, в цифровом аналоговом преобразователе возникает напряжение определенной величины, которое и поступает в качестве питания привода этой координаты. В серводвигателе начинается вращательное движение ходового винта, связанного с энкодером и исполнительным органом основного механизма.
В энкодере вырабатываются импульсы, подсчитываемые блоком, выполняющим управление сервоприводом. В программе заложено соответствие определенного количества сигналов с энкодера, установленному расстоянию, которое должен пройти исполняющий механизм. В нужное время аналоговый преобразователь, получив установленное число импульсов, прекращает выдачу выходного напряжения, в результате, серводвигатель останавливается. Точно так же под влиянием импульсов восстанавливается напряжение, и возобновляется работа всей системы.
Виды и характеристики
Серводвигатели выпускаются в самых разных вариантах, позволяющих использовать их во многих областях. Основные конструкции разделяются на коллекторные и бесколлекторные, предназначенные для работы от постоянного и переменного тока.
Кроме того, каждый сервомотор может быть синхронным и асинхронным. Синхронные устройства обладают способностью задавать высокоточную скорость вращения, а также углы поворотов и ускорение. Эти приводы очень быстро набирают номинальную скорость вращения. Сервоприводы в асинхронном исполнении управляются за счет изменения параметров питающего тока, когда его частота меняется с помощью инвертора. Они с высокой точностью выдерживают заданную скорость даже при самых низких оборотах.
В зависимости от принципиальной схемы и конструкции, сервоприводы могут быть электромеханическими и электрогидромеханическими. Первый вариант, включающий редуктор и двигатель, отличается низким быстродействием. Во втором случае действие происходит очень быстро за счет движения поршня в цилиндре.
Каждый сервопривод характеризуется определенными параметрами:
- Крутящий момент или усилие, создаваемое на валу. Считается наиболее важным показателем работы сервопривода. Для каждой величины напряжения существует собственный крутящий момент, отражаемый в паспорте изделия.
- Скорость поворота. Данный параметр представляет собой определенный период времени, который требуется, чтобы изменить позицию выходного вала на 600. Эта характеристика также зависит от конкретного значения напряжения.
- Максимальный угол поворота, на который может развернуться выходной вал. Чаще всего эта величина составляет 180 или 3600.
- Все сервоприводы разделяются на цифровые и аналоговые. В зависимости от этого и осуществляется управление сервоприводом.
- Питание серводвигателей. В большинстве моделей используется напряжение от 4,8 до 7,2В. Питание и управление осуществляется с помощью трех проводников.
- Возможность модернизации в сервопривод постоянного вращения.
- Материалы для редуктора могут использоваться самые разные. Шестерни изготавливаются из металла, карбона, пластика или комбинированных составов. Каждый из них обладает своими преимуществами и недостатками. Например, пластиковые детали плохо выдерживают ударные нагрузки, но устойчивы к износу в процессе длительной эксплуатации. Металлические шестерни, наоборот, быстро изнашиваются, зато они обладают высокой устойчивостью к динамическим нагрузкам.
Плюсы и минусы сервомоторов
Благодаря унифицированным размерам, эти устройства легко и просто устанавливаются в любые конструкции. Они безотказны и надежны, каждый из них работает практически бесшумно, что имеет большое значение при их эксплуатации на сложных и ответственных участках. Даже на невысоких скоростях можно добиться точности и плавных перемещений. Каждый сервопривод может быть настроен персоналом, в зависимости решения тех или иных задач.
В качестве недостатков отмечаются определенные сложности при настройках и сравнительно высокая стоимость.
Сервопривод для теплого пола
Управление шаговым двигателем
ЩСУ – щит станций управления
Ремонт люстры с пультом управления
Шаговый двигатель. Принцип работы
Принцип работы частотного преобразователя для асинхронного двигателя
Сервопривод. Что это такое и когда его применять
Сервопривод играет важную роль в автоматизации многих технологических процессов. Его применение не ограничивается только лишь промышленной направленностью, так как сервопривода также используются и в бытовой сфере, например, в системах обогрева, вентиляции и кондиционирования.
Что такое сервопривод?
Сервопривод это электрический мотор с обратной связью. С функциональной точки зрения это обозначает, что это такой мотор, который можно очень точно позиционировать. Точность позиционирования достигается с помощью обратной связи – датчика, встроенного в мотор.
Работа сервопривода заключается в следующем:
На двигатель подается управляющий импульс, который запускает его. Останов двигателя происходит в момент достижения необходимой позиции, о которой сигнализирует обратная связь, в виде датчика;
Стандартная схема сервопривода состоит из следующих основных узлов (см.рис.):
Рассмотрим более подробно, как происходит управление сервоприводом:
При подаче управляющего сигнала на сервопривод специальная электросхема производит сравнение поступившего напряжения и напряжения на датчике обратной связи (потенциометре). Если разность напряжений не равна нулю, то привод приходит в движение. Движение происходит до тех пор, пока разность сигналов не станет равна нулю.
Для чего применяются сервоприводы?
Сервоприводы очень распространены в различных сферах производства, и не только. Особенную популярность они получили в тех отраслях, где требуется очень точное позиционирование, это:
- Фасовочные и упаковочные машины;
- Разливные машины;
- Этикеровочные машины;
- Промышленная робототехника;
- Производство печатных плат;
- Станки с ЧПУ;
- Авиамодельное дело.
Также сервопривода используют для установки на различные клапаны и задвижки, требующие особенной точности и надежности.
Какие сервоприводы применяются?
Широкое распространение серводвигателей повлекло за собой появление их различных видов, которые можно разделить по следующим критериям:
Типы привода:
Подбор сервопривода. Почему это важно?
Когда встает вопрос о выборе необходимого сервопривода, важно знать основные технические параметры, по которым следует делать выбор :
- Момент на валу – сила, которую может преодолеть двигатель при вращении;
- Скорость – на сколько градусов повернется вал двигателя за единицу времени;
- Питающие напряжение – определяет величину напряжения, подключаемого к сервоприводу;
- Угол вращения – максимальный поворот вала, обычно 180 или 360 градусов;
- По углу поворота – бывают постоянного поворота (то есть только на 90 или любой другое значение), а могут быть на любой угол в определённых пределах;
- Тип управления устройством – цифровой, либо аналоговый.
Правильно подобранный сервопривод будет очень надежно и долго служить вам, и выполнять поставленную перед ним задачу с максимальной точностью.
Для того чтобы подвести итог о сервоприводах, выделим его плюсы и минусы:
- Плюсы:
- Универсальность – широкий выбор вида и уровня мощности;
- Точность и надёжность повышенные;
- Высокая скорость, в сравнении с другими видами двигателей;
- Бесшумная работа;
- Точная работа на малых оборотах.
- Минусы:
- Более «громоздкая» система за счет наличия датчика обратной связи;
- Управление сложнее, чем, например, шаговым двигателем;
- Высокая стоимость.
Как получить подробную информацию?
Для того чтобы купить сервопривод или получить более подробную информацию, обратитесь к нашим специалистам. Компания « РусАвтоматизация » поможет в выборе необходимого для решения поставленной задачи серводвигателя. При этом вы сэкономите время и деньги за счёт выбора оптимального функционала.
Принципы работы и виды сервоприводов
Отличительной особенностью сервопривода является возможность управления через отрицательную обратную связь с использованием заданных параметров. Все оборудование данного типа можно разделить на две группы – сервоприводы постоянного тока и трехфазные сервоприводы переменного тока.
Устройство сервоприводов постоянного тока
Как правило, сервоприводы постоянного тока используются в маломощных устройствах позиционирования. Классическая область их применения – робототехника.
Конструкция современных сервоприводов довольно проста, но при этом весьма эффективна, так как позволяет обеспечить максимально точное управление движением. Сервопривод состоит из:
- двигателя постоянного тока
- шестерни редуктора
- выходного вала
- потенциометра
- платы управления, на которую подается управляющий сигнал
Двигатель и редуктор образуют привод. Редуктор используется для снижения скорости вращения двигателя, которую необходимо адаптировать для практического применения. К выходному валу редуктора крепится необходимая нагрузка. Это может быть качалка, вращающийся вал, тянущие или толкающие механизмы.
Для того, чтобы угол поворота превратить в электрический сигнал, необходим датчик. Его функции в сервоприводе постоянного тока с успехом выполняет потенциометр. Он выдает аналоговый сигнал (как правило, от 0 до 10 В) с дискретностью, ограниченной АЦП (аналогово-цифровым преобразователем), на который поступает этот сигнал.
Самой важной деталью сервопривода, пожалуй, является электронная плата сервоусилителя, которая принимает и анализирует управляющие импульсы, соотносит их с данными потенциометра, отвечает за запуск и выключение двигателя.
Принцип работы
Принцип действия устройств основан на использовании импульсного сигнала, который имеет три важные характеристики – частоту повторения, минимальную и максимальную продолжительность. Именно продолжительность импульса определяет угол поворота двигателя.
Импульсные сигналы, получаемые сервоприводом, имеют стандартную частоту, а вот их продолжительность в зависимости от модели может составлять от 0,8 до 2,2 мс. Параллельно с поступлением управляющего импульса активируется работа генератора опорного импульса, который связан с потенциометром. Тот, в свою очередь, механически сопряжен с выходным валом и отвечает за корректирование его положения.
Электронная схема анализирует импульсы с учетом длительности и на основе разностной величины определяет разницу между ожидаемым (заданным) положением вала и реальным (измеренным при помощи потенциометра). Затем производится корректировка путем подачи напряжения на питание двигателя.
Основные положения устройства
Если продолжительность опорного и управляющего импульсов совпадает, наступает так называемый нулевой момент. В это время двигатель сервопривода не работает, вал привода находится в исходном (неподвижном) положении.
При увеличении длительности управляющего импульса плата фиксирует разбежку показателей, двигатель получает напряжение и приходит в движение. В свою очередь, редуктор начинает воздействовать на выходной вал, который поворачивается таким образом, чтобы достигнуть увеличения продолжительности опорного импульса. Как только он сравняется с управляющим импульсом, двигатель прекратит свою работу.
При уменьшении длительности управляющего импульса происходит все то же самое, только с точностью до наоборот, так как двигатель начинает вращаться в обратную сторону. Как только импульсы сравнялись, двигатель останавливается.
Сервопривод переменного тока
В сервоприводах переменного тока используется синхронный двигатель с мощными постоянными магнитами. В таких двигателях частота вращения ротора совпадает с частотой вращения магнитного поля, наводимого в обмотке статора.
Принцип работы сервопривода на основе трехфазного синхронного электродвигателя состоит в следующем. На обмотки статора поступает трехфазное напряжение, которое создает внутри него вращающееся магнитное поле. Это поле взаимодействует с постоянными магнитами, расположенными в роторе. В результате ротор вращается с частотой магнитного поля.
На валу ротора закреплен энкодер с высокой разрешающей способностью. Сигнал от него поступает по отдельному кабелю на специальный вход сервоусилителя. В то же время на управляющий вход сервоусилителя подается сигнал управления. В результате сравнения этих двух сигналов выделяется сигнал рассогласования, величина которого прямо пропорциональна разнице между целевыми и актуальными показателями вращения двигателя. На основании данного сигнала формируется трехфазное напряжение с такими параметрами, которые обеспечивают максимально быстрое уменьшение рассогласования до нуля.
Режимы управления
Существуют три основных режима работы сервопривода переменного тока.
Режим управления положением. Главное в этом режиме – контроль за углом поворота вала ротора. Управление производится последовательностью импульсов, которые могут приходить, например, с контроллера. Этот режим используется для точного позиционирования различных узлов технологического оборудования.
Комбинация импульсов для управления положением может передавать информацию не только по положению, но также по скорости и направлению вращения двигателя. Для этого могут использоваться три типа сигналов: 1) квадратурные импульсы (со сдвигом фаз на 90 градусов), 2) импульсы вращения по или против часовой стрелки, действующие поочередно и 3) импульсы скорости и потенциал направления, подающиеся на два входа.
Как правило, во всех сервоусилителях входы управления именуются как PULSE, SIGN.
Режим управления скоростью. В данном случае управление производится аналоговым сигналом. Значения скорости также могут переключаться на фиксированные величины подачей сигналов на соответствующие дискретные входы. В случае использования разнополярного аналогового управляющего сигнала возможна смена направления вращения серводвигателя.
Режим управления скоростью схож с работой асинхронного двигателя, управляемого преобразователем частоты. Задаются такие параметры, как время разгона и замедления, максимальная и минимальная скорости и другие.
Режим управления моментом.
В этом режиме двигатель может вращаться либо стоять на месте, но при этом момент на валу будет заданным. Управление может производиться дискретным либо аналоговым двухполярным сигналом. Этот режим может использоваться для машин, где необходимо менять усилие прижима, давление и т. п.
Оценка текущего момента двигателя, необходимого для управления, производится за счет встроенного датчика тока.
Процесс рекуперации
Рекуперация происходит при изменении направления (знака) момента нагрузки по отношению к вращающему моменту серводвигателя. Если энергия рекуперации невелика, она накапливается на конденсаторах звена постоянного тока, повышая напряжение на них.
Если разница абсолютных значений моментов нагрузки и серводвигателя составляет значительную величину, напряжение на конденсаторах шины постоянного тока может превысить пороговый уровень. В этом случае энергия рекуперации сбрасывается в тормозной резистор.
Источник: