Что такое терморезисторы и для чего они нужны
Что такое терморезисторы, их конструкция, виды, технические параметры
Соблюдение теплового режима в современных электронных устройствах не менее важно, чем обеспечение параметров электрического тока. Перегрев для полупроводниковых приборов так же губителен, как и резкое увеличение напряжения. Поэтому для контроля температуры термочувствительных электронных приборов применяются электрические схемы с использованием температурных датчиков, таких как терморезистор. Другие названия: термистор, термосопротивление.
Что такое терморезистор?
Обычный резистор обладает относительно стабильным сопротивлением. Разумеется, электрическое сопротивление обычного резистора может меняться при значительном его нагревании (в пределах допусков). Но в штатном режиме показания этих устройств стабильны, чего, собственно, добиваются разработчики.
При изготовлении терморезисторов умышленно подбирают такие материалы, сопротивление которых зависит от температуры. То есть, терморезистор – это полупроводниковый прибор, обладающий зависимостью его сопротивления от температуры. Можно сказать, что путем нагревания или охлаждения таких полупроводниковых устройств можно управлять их сопротивлениями.
Рис. 1. Терморезистор и его изображение на схемах
Температурные зависимости полупроводниковых резисторов широко применяются на практике, о чем речь пойдёт ниже. Заметим только, что термисторы являются, по сути, переменными резисторами, сопротивление которых изменяется не механическим способом, а зависит от степени нагрева и температурных характеристик применяемых полупроводниковых материалов. Причем не важно, прямым или косвенным нагревом произошло изменение температурных показателей.
Конструкция
Самый простой термистор состоит из термочувствительного элемента, платиновых электродов и никелевых выводов. Вся эта конструкция заключена в герметичный корпус (Схема строения показана на рисунке 2).
В качестве термочувствительного материала используют оксиды металлов. Для защиты конструкции используют стеклянный, пластиковый или металлический корпус.
Рис. 2. Конструкция простого термистора
В некоторых случаях в качестве резистивного материала используют медь или платину. Эти материалы обладают высокими показателями ТКС металлов в рабочем диапазоне температур. Однако их применение ограничено по причине дороговизны платины и ее нелинейности преобразования.
Использование медных терморезисторов ограничивается низкой коррозионной сопротивляемостью меди. Благодаря высокой теплопроводности этого металла резистивные элементы на основе меди встречаются в моделях с косвенным нагревом. Применяются для температур не выше 180 ºC.
Еще одним недостатком металлических термосопротивлений является их инерционность, достигающая нескольких минут. Такие конструкции мало пригодны для поддержания теплового режима электроприборов, но они идеально подходят в качестве датчиков для измерения температуры.
С целью уменьшения тепловой инерционности терморезисторы изготавливают из микропроводов, которые заключают в стеклянную колбочку (см. рис. 3). Такие датчики хорошо герметизированы, отличаются стабильностью, а их инерционность не превышает долей секунд.
Рисунок 3. Конструкция термистора в стеклянной колбе
Широкое распространение получили типы датчиков на базе полупроводниковых материалов. При нагревании полупроводников происходит насыщение этих материалов электронами и дырками, что приводит к уменьшению сопротивления.
Существуют конструкции плоских терморезисторов (рис. 4), а также полупроводниковые термисторы со сложной структурой резистивного элемента.
Рис. 4. Конструкция плоского терморезистора
Сегодня все чаще можно встретить платы, на которых применен способ SMT монтажа. Для этих целей промышленность выпускает SMD-терморезисторы разных номиналов (см. рис. 5).
Рис. 5. Терморезисторы для микроэлектроники
В большинстве конструкций терморезистивный элемент изготовляют методом порошковой металлургии. В этих целях используют материалы:
- халькогениды;
- оксиды металлов;
- галогениды и другие.
Очертание резистивных элементов может иметь форму бусинок, стержней, трубочек, пластинок и т. п.
Какую конструкцию вы бы не выбрали, принцип работы остается неизменным – зависимость сопротивления от температуры. Отличаются изделия только параметрами.
Режим работы терморезисторов
В зависимости от конструкторских замыслов, термисторы могут работать в системах с разными температурными режимами. Однако для каждой модели существует своя номинальная шкала температур.
По этому признаку их можно классифицировать следующим образом:
- терморезисторы низкотемпературного класса (до 170 К);
- изделия среднетемпературного класса (применяются в диапазоне температур 170 – 510 К);
- модели высокотемпературного класса (в пределах от 570 К и выше).
В отдельный класс выделены терморезисторы, способные работать при нагревах от 900 до 1300 К. Эти модели используют в качестве датчиков температуры различных нагревательных элементов.
Все термисторы выдерживают существенные токовые нагрузки. Правда, при работе в жестких термоцикличных режимах, их термоэлектрические характеристики, могут изменяться. Со временем изменения коснутся номинального сопротивления и коэффициента сопротивления.
Разновидности
Все терморезисторы классифицируют по типу нагрева: прямой и косвенный. Для прямого подогрева используется ток цепи, в которую включен терморезистор. Косвенный подогрев создают сторонние участки схемы или тепловые элементы.
Пример терморезистора прямого подогрева показан на рис. 6.
Рис. 6. Терморезисторы прямого подогрева
Также, в зависимости от того – повышается или понижается сопротивление при нагревании резистивного элемента, различают термисторы двух видов:с отрицательным ТКС и терморезисторы с положительным коэффициентом сопротивления.
NTC.
Полупроводниковые модели (термисторы) обладают отрицательным коэффициентом температурного сопротивления. Это значит, что они уменьшают номинальное сопротивление (показания при 25 ºC), в результате нагрева. Температурный коэффициент показывает, на сколько процентов уменьшается сопротивление резистивного элемента при повышении температуры нагрева на 1 ºC.
Термисторы NTC с отрицательным коэффициентом обычно применяются в диапазоне рабочих температур от 25 ºC до 200 ºC. Для температур свыше 600 ºC применяют термопары.
PTC.
Терморезисторы типа PTC обладают положительными температурными коэффициентами. Эти PTC-термисторы часто именуют позисторами, чтобы подчеркнуть положительность температурного коэффициента. Под этим термином мы понимаем терморезистор, сопротивление которого возрастает с ростом температуры.
Технические параметры
Большое разнообразие моделей термосопротивлений продиктовано потребностями современной электронной промышленности. Технические параметры изделий полупроводникового типа позволяют полностью удовлетворить спрос производителей радиоэлектронных и электротехнических устройств.
К основным параметрам относятся:
- номинальное сопротивление терморезистора, измеренное при температуре 25 ºC;
- мощность рассеяния (то есть максимальный ток, при котором обеспечиваются стабильность параметров терморезистора);
- диапазон рабочих температур, для которых предназначен терморезистор;
- ТКС.
Полупроводниковые термисторы обладают высокой чувствительностью в сочетании с отрицательными значениями ТКС. Они просты в изготовлении, имеют крохотные размеры, легко встраиваются в микросхемы. Все эти свойства делают термисторы незаменимыми в микроэлектронике.
Полупроводниковые термисторы подключаются через мостовую схему. Такое подключение позволяет в автоматическом режиме регулировать требуемые параметры электрических цепей. Иногда для этих целей приходится применять довольно сложные схемы автоматики.
Параметры металлических терморезисторов больше подходят для электротехнических устройств, в частности, они используются в качестве датчиков температуры. Их можно увидеть в водонагревательных установках, или в термометрах сопротивления. Такие типы датчиков (рис. 7) очень надежны в работе, имеют довольно широкий диапазон измерения.
Рис. 7. Датчик температуры
Датчики этого типа подключаются по простой схеме. Если требуется провести калибровку или выставить температуру, это обычно делается вручную, с помощью потенциометра. Простая схема подключения датчика температуры показана на рис. 8. Изменяя потенциометром напряжение можно влиять на величину ТКС. Визуально контролировать температуру можно с помощью амперметра, шкала которого проградуирована в градусах.
Рис. 8. Простая схема подключения терморезистора
Обозначение на схемах
На принципиальной схеме значки терморезисторов почти такие же, как и символы обычных резисторов, но с косой линией, перечеркивающей прямоугольник. (см. рис. 9). Для различения типа терморезистора внизу этой косой линии проставляют букву t со значком градуса и знаком «+» или «–», в зависимости от типа изделия. Например, +tº или –tº.
Рис. 9. Обозначение на схемах
Иногда проставляется номинал терморезистора и его температурный диапазон.
Маркировка
Существует два способа маркировки – буквенно-цифровая и цветовая, в виде колец и полосок. Единых требований для буквенной маркировки не существует – разные производители применяют свои варианты обозначений. Например, на дисковом термисторе могут стоять символы «15D-30», что расшифровывается так: номинальное сопротивление 15 Ом, диаметр изделия 30 мм. Здесь значение диаметра прямо связано с рассеиваемой мощностью – чем больше диаметр, тем больше рассеиваемая мощность термистора.
Заметим, что у другого производителя эти же параметры могут маркироваться совсем другим способом. Поэтому лучше пользоваться технической документацией изготовителя изделия.
Применение
В основном терморезисторы используют для защиты оборудования и различных устройств от перегрева и от возможных перегрузок. Реже зависимостью сопротивления стабилизируют работу нагревательного элемента.
Примеры использования:
- защита электромоторов от перегрева;
- тепловая защита обмоток трансформаторов;
- в системах размагничивания кинескопов и старых моделей мониторов;
- в электронных схемах современных автомобилей.
В большинстве схем используется способность термисторов преобразовывать внутреннюю энергию в электрический сигнал, который считывается автоматикой.
В нагревательных приборах терморезистор довольно часто используется в качестве самовосстанавливающегося предохранителя. Его сопротивление возрастает при достижении критической температуры и в результате этого электрическая цепь размыкается.
После остывания прибор восстанавливает работоспособность.
Сферы применения можно перечислять очень долго, но и эти примеры показывают, насколько востребованными оказались термисторы и термисторы.
Что такое терморезисторы и для чего они нужны
- Устройство и виды
- NTC
- Основные сведения
- Где используется
- Маркировка
- PTC
- Основные сведения
- Где применяется
Устройство и виды
Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:
- NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
- PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».
Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).
Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.
Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.
Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.
- Номинальное сопротивление при 25 градусах Цельсия.
- Максимальный ток или мощность рассеяния.
- Интервал рабочих температур.
- ТКС.
Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.
Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.
Основные сведения
Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.
Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.
Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.
Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.
Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.
Где используется
Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).
На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.
На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.
Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.
Принцип работы такой схемы:
Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.
Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.
Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.
Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.
Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.
Маркировка
Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:
На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:
5D-20
Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:
Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.
Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.
Основные сведения
Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO3). У позистора такой график температуры и сопротивления:
Кроме этого нужно обратить внимание на его вольтамперную характеристику:
Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:
- Линейный участок используется для измерения температуры;
- Нисходящий участок используется в пусковых реле, реле времени, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.
На видео ниже рассказывается, что такое позисторы:
Где применяется
Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:
- Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
- Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
- Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
- Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.
Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.
Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:
Наверняка вы не знаете:
Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность
Сопротивление любого проводника в общем случае зависит от температуры. Сопротивление металлов с нагревом увеличивается. С точки зрения физики это объясняется увеличением амплитуды тепловых колебаний элементов кристаллической решетки и возрастанием сопротивления движения направленному потоку электронов. Сопротивление электролитов и полупроводников при нагреве уменьшается – это объясняют другими процессами.
Принцип работы термистора
Во многих случаях явление зависимости сопротивления от температуры вредное. Так, низкое сопротивление нити лампы накаливания в холодном состоянии служит причиной перегорания в момент включения. Изменение значения сопротивления постоянных резисторов при нагреве или охлаждении ведет к изменению параметров схемы.
С этим явлением борются разработчики, выпускаются резисторы с уменьшенным ТКС — температурным коэффициентом сопротивления. Стоят такие элементы дороже обычных. Но существуют такие электронные компоненты, у которых зависимость сопротивления от температуры ярко выражена и нормирована. Эти элементы называются терморезисторами (термосопротивлениями) или термисторами.
Виды и устройство терморезисторов
Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:
- если при нагреве сопротивление падает, такие терморезисторы называются NTC-термисторами (с отрицательным температурным коэффициентом сопротивления);
- если при нагреве сопротивление увеличивается, то термистор имеет положительный ТКС (PTC-характеристику) – такие элементы называют ещё позисторами.
Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.
Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.
Основные характеристики
Самая главная характеристика любого терморезистора – его температурный коэффициент сопротивления (ТКС). Он показывает, насколько меняется сопротивление при нагреве или охлаждении на 1 градус Кельвина.
Хотя изменение температуры, выраженное в градусах Кельвина, равно изменению в градусах Цельсия, в характеристиках термосопротивлений пользуются все же Кельвинами. Это связано с широким применением в расчетах уравнения Стейнхарта-Харта, а в него входит температура в К.
ТКС отрицателен у термисторов типа NTC и положителен у позисторов.
Другая важная характеристика – номинальное сопротивление. Это значение сопротивления при 25 °С. Зная эти параметры, легко определить применимость термосопротивления для конкретной схемы.
Также для использования термисторов важны такие характеристики, как номинальное и максимальное рабочее напряжение. Первый параметр определяет напряжение, при котором элемент может работать длительное время, а второй – напряжение, выше которого работоспособность термосопротивления не гарантируется.
Для позисторов важным параметром является опорная температура – точка на графике зависимости сопротивления от нагрева, при которой происходит перелом характеристики. Она определяет рабочий участок PTC-сопротивления.
При выборе терморезистора надо обратить внимание и на его температурный диапазон. Вне заданного производителем участка, его характеристика не нормируется () или термистор там вообще неработоспособен.
Условно-графическое обозначение
На схемах УГО термистора могут незначительно отличаться, но главный признак термосопротивления – символ t рядом с прямоугольником, символизирующим резистор. Без этого символа не определить, от чего зависит сопротивление – схожее УГО имеют, например, варисторы (сопротивление определяется приложенным напряжением) и другие элементы.
Иногда на УГО наносят дополнительное обозначение, определяющее категорию терморезистора:
- NTC для элементов с отрицательным ТКС;
- PTC для позисторов.
Эту характеристику иногда обозначают стрелками:
- однонаправленными для PTC;
- разнонаправленными для NTC.
Литерное обозначение может быть различным – R, RK, TH и т.п.
Как проверить термистор на работоспособность
Первая проверка исправности термистора – измерение номинального сопротивления обычным мультиметром. Если замер ведется при комнатной температуре, которая не очень отличается от +25 °С, то и измеренное сопротивление не должно существенно отличаться от указанного на корпусе или в документации.
Если температура окружающего воздуха выше или ниже указанного значения, надо взять небольшую поправку.
Можно попытаться снять температурную характеристику термистора – чтобы сравнить её с заданной в документации или чтобы восстановить её для элемента неизвестного происхождения.
Есть три температуры, доступные для создания с достаточной точностью без измерительных приборов:
- тающий лед (можно взять в холодильнике) – около 0 °С;
- человеческое тело – около 36 °С;
- кипящая вода – около 100 °С.
По этим точкам можно нарисовать приблизительную зависимость сопротивления от температуры, но для позисторов это может не сработать – на графике их ТКС, есть участки, где R температурой не определяется (ниже опорной температуры). Если термометр имеется, можно снять характеристику по нескольким точкам – опустив терморезистор в воду и нагревая её. Через каждые 15…20 градусов надо замерять сопротивление и наносить значение на график. Если надо снять параметры выше 100 градусов, вместо воды можно использовать масло (например, автомобильное – моторное или трансмиссионное).
На рисунке изображены типовые зависимости сопротивлений от температуры – сплошной линией для PTC, штриховой – для NTC.
Где применяются
Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.
Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.
Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.
Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.
Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.
Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.
Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.
Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.
Что такое резистор и для чего он нужен?
Что такое триггер, для чего он нужен, их классификация и принцип работы
Принцип работы и основные характеристики стабилитрона
Что такое диодный мост, принцип его работы и схема подключения
Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность
Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды
Термистор – характеристика и принцип действия
Главная страница » Термистор – характеристика и принцип действия
Термистор (терморезистор) – твердотельный электронный элемент, внешне напоминающий постоянный резистор, но обладающий выраженной температурной характеристикой. Этот вид электронных приборов, как правило, используются для изменения аналогового выходного напряжения с учётом изменения окружающей температуры. Другими словами – электрические свойства термистора и принцип действия напрямую связаны с физическим явлением — температурой.
Характеристика электронного элемента
Термистор — термочувствительный полупроводниковый элемент, изготовленный на основе полупроводниковых оксидов металлов. Обычно имеет форму диска или шара с металлизированными или соединительными выводами.
Такие формы позволяют изменять резистивное значение пропорционально малым изменениям температуры. Для стандартных резисторов изменение сопротивления от нагрева видится нежелательным явлением. Но этот же эффект видится удачным при построении многих электронных схем, требующих определения температуры.
Таким образом, будучи нелинейным электронным устройством с переменным сопротивлением, терморезистор успешно подходит для работы в качестве терморезистора-датчика. Такого рода датчики широко применяют для контроля температуры жидкостей и газов.
Выступая твердотельным устройством, изготовленным на основе высокочувствительных оксидов металлов, терморезистор работает на молекулярном уровне. Валентные электроны становятся активными и воспроизводят отрицательный ТКС либо пассивными и тогда воспроизводят положительный ТКС.
В результате электронные приборы – термисторы, демонстрируют очень хорошую воспроизводимую резистивность, сохраняя эксплуатационные характеристики, позволяющие продуктивно работать в диапазоне температур до 200ºC.
Применение терморезисторов на практике
Базовым направлением применения, в данном случае, являются резистивные температурные датчики. Однако эти же электронные элементы, принадлежащие семейству резисторов, можно успешно использовать включенными последовательно с другими компонентами или устройствами.
Простые схемы включения терморезисторов, показывающие работу приборов в качестве температурных датчиков — своеобразных преобразователей напряжения за счёт изменения сопротивления
Такая схема включения позволяет контролировать ток, протекающий через компонент. Таким образом, термисторы, по сути, выступают ещё и токоограничителями. Производятся термисторы разного типа, на основе различных материалов и отличаются по размерам в зависимости от времени отклика и рабочей температуры.
Существуют герметичные модификации приборов, защищённые от проникновения влаги. Есть конструкции под высокие рабочие температуры и компактные по размерам. Следует выделить три наиболее распространенных типа терморезисторов:
- шариковые,
- дисковые,
- инкапсулированные.
Работают приборы в зависимости от изменения температуры:
- На уменьшение резистивного значения.
- На увеличение резистивного значения.
То есть существует два типа приборов:
- Обладающие отрицательным ТКС (NTC).
- Обладающие положительным ТКС (PTC).
Отрицательный коэффициент ТКС
NTC-термисторы с отрицательным ТКС уменьшают собственное резистивное значение по мере увеличения внешней температуры. Как правило, именно эти приборы чаще выступают датчиками температуры, поскольку идеально подходят практически к любому типу электроники, где требуется контроль температуры.
Относительно большой отрицательный отклик термистора NTC означает, что даже небольшие изменения температуры способны значительно изменить электрическое сопротивление прибора. Этот фактор делает модели NTC идеальными датчиками точного измерения температур.
Схема калибровки (проверки) терморезистора: 1 — источник питания; 2 — направление тока; 3 — испытуемый электронный элемент термистор; 4 — калибровочный микроамперметр
Терморезисторы NTC, снижающие сопротивление с повышением температуры, по исполнению доступны с различными базовыми сопротивлениями. Как правило, характеристика привязывается к базовым сопротивлениям при комнатной температуре.
Например: 25ºC берётся за контрольную (базовую) температурную точку. Отсюда выстраиваются значения приборов, допустим, следующих номиналов:
- 2,7 кОм (25ºC),
- 10 кОм (25ºC)
- 47 кОм (25ºC)….
Другой важной характеристикой является значение «В». Величина «В» представляет собой постоянную константу, которая определяется керамическим материалом, из которого изготовлен термистор.
Этой же константой определяется градиент кривой резистивного отношения (R/T) в определенном температурном диапазоне между двумя температурными точками. Каждый материал термистора имеет различную материальную константу и, следовательно, индивидуальную кривую отношения сопротивления и температуры.
Так, константа «B» определяет одно резистивное значение при базовой T1 (25ºС), и другое значение при Т2 (например, при 100ºC). Следовательно, значение B определит постоянную константу материала термистора, ограниченную диапазоном T1 и T2:
B * T1 / T2 (B* 25 / 100)
p.s. значения температуры в расчётах берутся в градуировке Кельвина.
Отсюда вытекает, что имея значение «В» (из характеристики производителя) конкретного прибора, электронщику останется только создать таблицу температур и сопротивлений, чтобы построить подходящий график при помощи следующего нормированного уравнения:
где: T1, T2 – температуры в градусах Кельвина; R1, R2 – сопротивления при соответствующих температурах в Омах.
Так, например, термистор NTK, обладающий сопротивлением 10 кОм, имеет значение «В» равным 3455 в рамках температурного диапазона 25 — 100ºC.
Очевидный момент: термисторы экспоненциально меняют сопротивление с изменениями температуры, поэтому характеристическая кривая приборов нелинейная. Чем больше контрольных точек устанавливаются, тем точнее получается кривая.
Применение термистора в роли активного датчика
Поскольку прибор является активным типом датчика, для работы требуется сигнал возбуждения. Любые изменения сопротивления в результате изменения температуры преобразуются в изменение напряжения.
Промышленностью выпускаются термисторы разного исполнения, в том числе высокоточные, надёжно защищённые для применения в системах высокого уровня
Самый простой способ добиться подобного эффекта — использовать термистор как часть схемы делителя потенциала, как показано на рисунке ниже. Постоянное напряжение подаётся в цепь резистора и терморезистора.
К примеру, используется схема, где термистор 10 кОм включен последовательно с резистором 10 кОм. В этом случае выходное напряжение при базовой Т = 25ºC составит половину напряжения питания.
Таким образом, схема делителя потенциалов является примером простого преобразователя сопротивления в напряжение. Здесь сопротивление термистора регулируется температурой с последующим формирования величины выходного напряжения, пропорциональной температуре.
Простыми словами: чем теплее корпус термистора, тем ниже напряжение на выходе.
Между тем, если изменить положение последовательного резистора, RS и термистора RTH, в этом случае уровень выходного напряжения изменится на противоположный вектор. То есть теперь чем больше нагреется термистор, тем выше будет уровень выходного напряжения.
Использовать термисторы допускается и как часть базовой конфигурации с использованием мостовой схемы. Связью между резисторами R1 и R2 устанавливается опорное напряжение до требуемого значения. Например, если R1 и R2 имеют одинаковые значения сопротивления, опорное напряжение равно половине напряжения питания (V/2).
Схема усилителя, построенная с использованием этой мостовой схемы с термозондом, может выступать в качестве высокочувствительного дифференциального усилителя или в качестве простой схемы запуска Шмитта с функцией переключения.
Включение терморезистора в мостовую схему: R1, R2, R3 -обычные постоянные резисторы; Rт — термистор; А — измерительный прибор микроамперметр
Существует проблема, связанная с прохождением тока через термистор (эффект «самонагрева»). В таких случаях рассеиваемая мощность I 2 R достаточно высока и создаёт больше тепла, чем способен рассеять корпус прибора. Соответственно, это «лишнее» тепло влияет на резистивное значение, что приводит к ложным показаниям.
Одним из способов избавления от эффекта «самонагрева» и получения более точного изменения сопротивления от влияния температуры (R/T), видится питание термистора от постоянного источника тока.
Термистор как регулятор пускового тока
Приборы традиционно используются в качестве резистивных чувствительных к температуре преобразователей. Однако сопротивление термистора изменяется не только под влиянием окружающей среды, но также изменения наблюдаются от протекающего через прибор электротока. Эффект того самого «самонагрева».
Разное электрооборудование на индуктивной составляющей:
- двигатели,
- трансформаторы,
- электролампы,
- другое,
подвергается чрезмерным пусковым токам при первом включении. Но если в цепь последовательно включить термистор, можно эффективно ограничивать высокий начальный ток. Такое решение способствует увеличению срока службы электрооборудования.
Терморезисторы с низким ТКС (при 25°C) обычно используются для регулирования пускового тока. Так называемые ограничители тока (перенапряжения) меняют сопротивление до очень низкого значения при прохождении тока нагрузки.
В момент первоначального включения оборудования пусковой ток проходит через холодный термистор, резистивное значение которого достаточно велико. Под воздействием тока нагрузки термистор нагревается, сопротивление медленно уменьшается. Так осуществляется плавная регулировка тока в нагрузке.
Термисторы NTC достаточно эффективно обеспечивают защиту от нежелательно высоких пусковых токов. Преимущественной стороной здесь является то, что этот тип приборов способен эффективно обрабатывать более высокие пусковые токи по сравнению с резисторами стандартного образца.
Видео по теме: Диагностика неисправности термистора электродвигателя
Видеороликом ниже рассматривается практика обслуживания электрических двигателей, дополненных встроенными термисторами непосредственно в состав обмотки статора. В частности, неисправности так называемого термического выключателя:
КРАТКИЙ БРИФИНГ
Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .
Терморезисторы
Обозначение на схеме, разновидности, применение
В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.
Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.
На принципиальных схемах терморезистор обозначается вот так.
В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи или .
Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.
У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.
На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.
Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.
Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.
Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.
Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.
Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.
Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.
Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.
Прямой и косвенный нагрев.
По способу нагрева терморезисторы делят на две группы:
Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).
Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.
NTC-термисторы и позисторы.
По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:
PTC-термисторы (они же позисторы).
Давайте разберёмся, какая между ними разница.
NTC-термисторы.
Своё название NTC-термисторы получили от сокращения NTC – , или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.
Обозначение термистора на схеме
Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.
На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.
На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.
Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.
Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.
Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).
При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.
Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.
Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.
Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.
Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.
Позисторы. PTC-термисторы.
Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC — , «Положительный Коэффициент Сопротивления»).
Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.
Условное обозначение позистора на схеме.
Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.
На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.
Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.
Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.
Наверное, каждый помнит характерный звук «бдзынь», когда включается телевизор — это и есть тот момент, когда работает петля размагничивания.
Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.
Далее на фото трёхвыводный позистор СТ-15-3.
Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-«таблеток», которые установлены в одном корпусе. На вид эти «таблетки» абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3
3,6 кОм, а у другой всего лишь 18
Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.
Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.
Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора — это самовосстанавливающийся предохранитель.
SMD-терморезисторы.
С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.
Встроенные терморезисторы.
В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.
Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.
Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.
Терморезисторы. Виды и устройство. Работа и параметры
Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.
Устройство и работа
Они имеют простую конструкцию, выпускаются разных размеров и формы.
В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.
При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.
Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).
Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.
Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.
Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.
Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.
На электрических схемах терморезисторы обозначаются:
Основные параметры
- ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
- Номинальное сопротивление – это величина сопротивления при 0 градусах.
- Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
- Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов
Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.
Металлические терморезисторы
Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.
Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.
Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.
Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.
Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.
Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.
Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.
Полупроводниковые
Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.
Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.
Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.
Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.
Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.
Применение терморезисторов
В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.
При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.
На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:
Источник: