Как определить тип конденсатора без маркировки?

Как определить тип конденсатора без маркировки?

SDM конденсаторы без маркировки

Очень многие начинающие радиолюбители сталкиваются с проблемой определения характеристик таких накопительных устройств, как смд конденсаторы. Имеющие небольшой размер и используемые при такой технологии установки, как поверхностный монтаж, эти компоненты многих печатных плат имеют маркировку, отличающуюся от той, которая используется у более крупных аналогов для сквозного монтажа. В данной статье будут рассмотрены основные виды данных радиодеталей, их обозначение и его расшифровка.

Виды SMD-конденсаторов

Все используемые для поверхностного монтажа накопительные устройства бывают трех основных видов: керамические, электролитические и танталовые.

Электролитические

Такие компоненты для поверхностного монтажа состоят из:

  • Алюминиевого цилиндрического корпуса, диаметром от 4 до 10 мм и высотой от 5,4 до 10,5 мм;
  • Двух обкладок из тонкой фольги, разделенных пропитанной электролитом бумагой и скрученных в небольшой рулончик;
  • Двух контактов (выводов), которые располагаются перпендикулярно осевой линии компонента. Так как электролитические смд накопители являются полярными, то к одному из контактов, обозначенному специальной полосой на торце корпуса, подключают отрицательный потенциал, ко второму – положительный.
  • Монтажной площадки, предназначенной для фиксации компонента на рабочей поверхности.

Различные модели данных компонентов, имеющие номинал от 1 до 1000-150 мкФ, способны работать при напряжении от 4 до 1000 В.

Керамические

Наиболее часто применяемый керамический многослойный накопитель для поверхностного монтажа имеет следующее строение:

  • Керамическое тело – большое количество тонких слоев керамического диэлектрика;
  • Внутренние электроды – никелевые тонкие пластинки, расположенные между слоями керамического диэлектрика;
  • Торцевые контактные электроды – два вывода, к каждому из которых подключена половина внутренних электродов.

В отличие от электролитических, такие компоненты имеют уплощенную прямоугольную форму, небольшие размеры (длина и ширина самых мелких радиодетали этого вида составляют всего 0,8 и 1,5-1,6 мм, соответственно). Однако, несмотря на небольшие размеры, такие смд компоненты могут работать при напряжении от 25 до 700-1000В, накапливая при этом заряд, величиной от 0,5-1,пФ до 3-3,3 мкФ.

Танталовые

Основными составными частями танталовых полярных накопительных смд устройств являются:

  • Анод – контакт, на который подается электрический ток с отрицательным потенциалом;
  • Катод – расположенный на противоположной стороне корпуса контакт, запитываемый положительным потенциалом;
  • Диэлектрик – слой не проводящего электрический ток материала, располагающегося между анодом и катодом;
  • Электролит – находящееся в жидком или твёрдом агрегатном состоянии, проводящее электрический ток вещество. Для предотвращения высыхания конденсатора чаще всего в качестве электролита используют гранулированный оксид марганца.
  • Диэлектрик – оксид тантала, которым покрыт располагающийся в корпусе гранулированный анод.

Применяют такие небольшие по размерам накопительные устройства при рабочем напряжении от 6 до 32-35 В. Величина накапливаемого при этом заряда колеблется от 1 до 600-680 мкФ.

Как определить номинал и напряжение

Очень многие производители не указывают на своих изделиях такие основные для любого конденсатора характеристики, как рабочее напряжение и номинал (номинальная емкость).

Определение номинала данных электронных компонентов производится следующими способами:

  • С помощью такого имеющего функцию измерения номинала контрольно-измерительного прибора, как мультиметр. Для измерения значения номинала контрольные щупы прибора подключают к специальным разъемам. Затем переключатель устанавливается на самый большой по значению предел измерения (в большинстве мультиметров это 200 мкФ). После этого щупы прикладывают к контактам конденсатора, спустя несколько секунд на дисплее прибора получают значение номинала накопительного устройства.

Важно! Перед измерением емкости смд накопитель обязательно разряжают – оставшийся в обкладках заряд может повредить электронные схемы мультиметра.

  • С помощью специализированного измерительного прибора RLC.

Для того чтобы узнать рабочее напряжение накопительного SMD устройства, пользуются следующей простой методикой:

  • При помощи мультиметра измеряют напряжение между выводами включенного в схему компонента;
  • Полученное значение умножают на 1,5.

Рассчитанное таким способом рабочее напряжение будет примерным, более точное значение данной характеристики можно узнать из маркировочного кода конденсатора или его описания.

Маркировка конденсаторов: расшифровка цифр и букв

В зависимости от вида накопительного смд устройства, различают несколько методик их маркировки.

Маркировка керамических устройств

Устройства данного вида маркируются с помощью одной или двух латинских букв и цифры. Первая буква при этом обозначает производителя компонента, вторая – его номинальную ёмкость. Цифра в маркировочном коде указывает на степень номинала конденсатора в пикофарадах.

Пример. Маркировка накопительного смд компонента KG3 расшифровывается как изделие, произведенное компанией «Kemet» и имеющее емкость 1,8×103 пкФ.

Маркировка электролитических SMD накопителей

Электролитические накопительные устройства для поверхностного монтажа маркируются 4 основными способами:

  • В виде одной буквы, обозначающей рабочее напряжение, и трех цифр, две из которых указывают на значение емкости конденсатора, а третья – на степень номинала в пикофарадах.
  • В виде двух букв, обозначающих рабочее напряжение и емкость, одной цифры, указывающей на степень номинала в пикофарадах.

  • Четырьмя символами – это обозначение, состоящее из одной буквы, означающей рабочее напряжение, двух цифр, указывающих на емкость компонента, и последней цифры, определяющей количество нулей после значения емкости.
  • Двухстрочная – верхняя часть маркировки в виде цифры означает емкость компонента, нижняя – его рабочее напряжение.

Маркировка танталовых накопительных смд устройств

Маркировка танталовых смд накопителей состоит из следующих частей:

  • Большой латинской буквы, указывающей на рабочее напряжение компонента;
  • Трёхзначного числа, первые две цифры которого означают емкость накопителя, а последняя – количество нулей после значения емкости.

Пример. Маркировка танталового накопителя G103 означает, что он имеет рабочее напряжение 4 В и емкость 10 000 пикофарад.

Важно! При подключении танталовых и электролитических накопителей необходимо соблюдать полярность. Для этого на их корпуса наносится специальная полоса, имеющая черный цвет и обозначающая положительный (у танталовых накопителей) или отрицательный (у электролитических устройств) вывод. Неправильное подключение с игнорированием данных меток приведет к тому, что накопитель выйдет из строя.

Как маркируются большие конденсаторы

Большие накопительные смд устройства маркируются по тем же принципам, что их более мелкие аналоги. При больших размерах корпуса на таких компонентах часто пишется полное значение их емкости и рабочего напряжения.

На заметку. По поисковому запросу «smd конденсаторы без маркировки как определить», помимо сайтов, на первой странице выдачи полезную информацию по данной тематике содержат различные форумы радиолюбителей и специалистов, занимающихся ремонтом компьютерной и бытовой техники.Обозначение в схемах.

На электрических схемах накопительные смд устройства имеют такое же обозначение, как и у их используемых для сквозного монтажа аналогов.

Таким образом, умение читать и расшифровывать маркировочные коды позволяет правильно определять характеристики данных накопителей. Такие навыки очень важны при замене вышедших из строя накопителей, пайке сложных схем, чувствительных к перепадам вольт-амперных характеристик электрического тока.

Видео

Виды и аналоги конденсаторов

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Содержание

  • Высоковольтные конденсаторы
  • Керамические конденсаторы
  • Бумажные и металлобумажные конденсаторы
  • Электролитические конденсаторы
  • Пленочные и металлопленочные конденсаторы
  • ЧИП-конденсаторы
  • Таблица аналогов конденсаторов

Высоковольтные конденсаторы

В высоковольтных устройствах (умножителях напряжения, генераторах Маркса, катушках Тесла, мощных лазерах и т.п.) применяют высоковольтные конденсаторы, отличающиеся по конструкции от низковольтных. Они используются в схемах с напряжением более 1600 В. Некоторые разновидности высоковольтных электронных устройств:

  • К75-25 – импульсные модели, используемые в схемах с напряжением до 50 кВ. Их емкость – 2-25 нФ. Благодаря возможности работать с токами частотой 500 Гц, эффективны в искровых катушках Тесла.
  • К15-4. Этот тип конденсатора можно определить по корпусу цилиндрической формы зеленого цвета. Имеют небольшую емкость и используются в генераторах Маркса, старых телевизорах, умножителях напряжения и других высоковольтных низкочастотных схемах.
  • К15-5. Керамические детали кирпичного цвета, компактных габаритов, дисковой формы. Максимальное напряжение – 6,3 кВ, используются в высокочастотных фильтрах.

Керамические конденсаторы

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

Читайте также  Не срабатывает датчик движения на прожекторе

Бумажные и металлобумажные конденсаторы

В бумажных конденсаторах фольгированные обкладки разделяет диэлектрик из конденсаторной бумаги. Эти детали используются как в высокочастотных, так и низкочастотных цепях. Они не пользуются популярностью из-за низкой механической прочности. Более прочным вариантом является металлобумажная деталь, в которой на бумагу напыляется металлический слой.

Бумажные и металлобумажные конденсаторы выпускаются в широком интервале емкостей и номинальных напряжений. Металлобумажные варианты выигрывают в плане компактности конструкции и проигрывают по стабильности сопротивления изоляции. Дополнительный плюс металлобумажных изделий – способность к самовосстановлению электрической прочности при единичных случаях пробоев бумаги.

Электролитические конденсаторы

Электролитические конденсаторы отличаются повышенной энергоемкостью и используются в цепях переменного и постоянного тока. В них диэлектриком является металлооксидный слой, созданный электрохимическим способом. Он располагается на плюсовой обложке из того же металла. Другая обложка – жидкий или сухой электролит. Металл – алюминий, ниобий или тантал.

Конденсаторы постоянной емкости относятся к устаревшим. Им на смену пришли детали переменной электроемкости. Наиболее распространены электролитические конденсаторы подстроечного типа. Их емкость меняется при регулировке, но при работе схемы остается постоянной. Благодаря герметичности корпуса и твердого полупроводника, изделия стабильны при хранении и могут использоваться при низких температурах (до -80°C) и высоких частотах.

Пленочные и металлопленочные конденсаторы

Пленочные полистирольные изделия востребованы в схемах импульсного характера, с постоянным или высокочастотным переменным током. Такая продукция выпускается с обкладками из фольги или с пленочным диэлектриком, на который наносится тонкий металлизированный слой. Для изготовления пленочного диэлектрика используются поликарбонат, тефлон, полипропилен, металлизированная бумага. Диапазон емкостей – 5 пкФ-100 мкФ. Очень популярны высоковольтные исполнения пленочных конденсаторов – до 2000 В.

Выпускаются различные типы пленочных конденсаторов, которые различаются по:

  • размещению слоев диэлектрика и обкладок – аксиальные и радиальные;
  • материалу изготовления корпуса – полимерные и пластмассовые, выпускают модели без корпуса с эпоксидным покрытием;
  • форма – цилиндрическая и прямоугольная.

Основное преимущество такой продукции – способность к самовосстановлению, защищающая ее от вероятности преждевременного отказа. Другие плюсы – хорошие электрохимические характеристики, тепловая стабильность, способность к высоким нагрузкам при переменном токе. Благодаря выше перечисленным свойствам, пленочные и металлопленочные изделия применяются в измерительной технике, радиоэлектронике, вычислительной технике.

ЧИП-конденсаторы

Также называются SMD конденсаторы. Эти радиокомпоненты предназначены для поверхностного монтажа. Типы безвыводных конденсаторов:

  • керамические;
  • пленочные;
  • танталовые.

Чип-конденсаторы имеют компактные габариты, стандартизированную форму корпуса, характеристики, во многом совпадающие с многослойными конденсаторами. Используются в печатных платах как по отдельности, так и наборами.

Таблица аналогов конденсаторов

Напишите в комментариях какие аналоги зарубежных или отечественных конденсаторов вы знаете и мы добавим их в таблицу.

Конденсаторы для «чайников»

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические

Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Читайте также  Как справиться с белой и буройпятнистостью листьев?

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

SDM конденсаторы без маркировки

При работе с SMD-конденсаторами многие радиолюбители сталкиваются с определёнными трудностями, поскольку с первой попытки разобраться с имеющимися на них обозначениями очень непросто. Существуют и такие конденсаторные изделия, на которых вообще нет маркировки.

Вследствие этого вопрос о том, как определить smd конденсатор без маркировки, представляется очень важным для всех любителей монтажа радиоаппаратуры. Но прежде чем научиться идентифицировать лишённые маркировки отечественные и импортные ёмкости, желательно ознакомиться с их разновидностями.

Виды SMD-конденсаторов

Различные наименования SMD-конденсаторов по своему функциональному назначению делятся на три класса:

  • Керамические или плёночные неполярные изделия с номиналами от 10 пикофарад до 10 микрофарад, которые обычно не маркируются;
  • Электролитические конденсаторы, имеющие форму алюминиевого бочонка, предназначенного для поверхностного монтажа;
  • Танталовые конденсаторные детали, имеющие прямоугольный корпус различного размера. Выпускаются с цветовой (черной, желтой или оранжевой) маркировкой, дополненной специальным кодом.

Все перечисленные изделия должны иметь обозначение, выполненное в виде соответствующей стандарту маркировки. Но нередко она по той или иной причине отсутствует (стирается, смывается или не была нанесена при кустарном производстве). В этом случае необходимо предпринять какие-то шаги по их полной идентификации.

Как определить номинал и напряжение

Каждый миниатюрный конденсатор характеризуется двумя основными параметрами: номинальной ёмкостью и предельным напряжением, при котором он ещё может работать. Рассмотрим порядок выявления каждого из этих показателей более подробно.

Номинальное значение

Для определения первого из параметров можно воспользоваться следующими методами:

  • Попытаться измерить их номинальную ёмкость посредством прибора (мультиметра), имеющего соответствующую функцию;
  • Использовать для этих целей специальный измеритель RLC.

Обратите внимание! Оба эти способа предполагают удаление конденсатора из платы или отпаивание хотя бы одной контактной площадки.

С порядком измерения SMD-конденсаторов тем и другим прибором можно ознакомиться в инструкции по их применению.

Рабочее напряжение

Для того чтобы проявить ситуацию с предельным рабочим напряжением данного элемента, существует всего лишь один надёжный способ. Он состоит в том, чтобы попытаться измерить напряжение между контактами, куда запаян неизвестный конденсатор (при включённой аппаратуре естественно).

После определения этого показателя можно предположить, что сам конденсатор рассчитан на напряжение, примерно в полтора раза превышающее полученное после измерения значение.

Электролитические компоненты

Известно, что маркировка электролитического конденсатора имеет свои особенности, проявляющиеся в указании ещё одного дополнительного параметра – полярности включения. В случае отсутствия этого обозначения единственный способ восстановить утерянную информацию – выпаять его из схемы и определить полярность напряжения на данном участке посредством мультиметра.

Дополнительная информация. Перед выпаиванием идентифицируемого изделия из платы следует пометить его ножки каким-либо способом, позволяющим зафиксировать их расположение в схеме.

В заключение отметим, что при любых разновидностях конденсаторных изделий для определения номинала или рабочего напряжения потребуется умение обращаться со специальной измерительной аппаратурой.

Видео

Как обозначаются конденсаторы на схеме?

Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.

Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.

Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.

Единицы измерения

Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10 -6
  • 1 нанофарада – одна миллиардная часть фарады. 10 -9
  • 1 пикофарада -10 -12 фарады.
код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ
Читайте также  Организация проведения родов и выращивание молодняка овец

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.

Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Конденсаторы — фото справочник

Здесь я буду выкладывать фотографии различных пленочных и керамических конденсаторов, с некоторыми пояснениями и расшифровками маркировок

Внимание: навигация по страницам внизу статьи!

Конденсаторы пленочные и керамические — фотосправочник, с расшифровкой кодовых маркировок

Маркировка конденсатора 1n5 — это значит 1500 пФ, или 1,5 нФ, или 0,0015 мкФ (импортная кодовая маркировка 152)

Советский конденсатор 1979 года, на 1500 пФ, 250 вольт, тип неизвестен

Маркировка конденсатора 3n9K или 3n9J — это значит 3900 пФ, или 3,9 нФ, или 0,0039 мкФ (импортная кодовая маркировка 392)

Маркировка конденсатора 6n8 — это значит 6800 пФ, или 6,8 нФ, или 0,0068 мкФ (импортная кодовая маркировка 682)

Маркировка конденсатора 68n — это значит 68000 пФ, или 68 нФ, или 0,068 мкФ (импортная кодовая маркировка 683)

Маркировка конденсатора М33 — это значит 330000 пФ, или 330 нФ, или 0,33 мкФ (импортная кодовая маркировка 334).

Маркировка конденсатора n15K — это значит 150 пФ, или 0,15 нФ, или 0,00015 мкФ (импортная кодовая маркировка 151).

Маркировка конденсатора n20 — это значит 200 пФ, или 0,2 нФ, или 0,0002 мкФ (импортная кодовая маркировка мне неизвестна).

Маркировка конденсатора n39K — это значит 390 пФ, или 0,39 нФ, или 0,00039 мкФ (импортная кодовая маркировка 391).

Маркировка конденсатора n47K — это значит 470 пФ, или 0,47 нФ, или 0,00047 мкФ (импортная кодовая маркировка 471).

Маркировка конденсатора n56K — это значит 560 пФ, или 0,56 нФ, или 0,00056 мкФ (импортная кодовая маркировка 561).

Маркировка конденсатора n62K — это значит 620 пФ, или 0,62 нФ, или 0,00062 мкФ (импортная кодовая маркировка 621).

Маркировка конденсатора n68K — это значит 680 пФ, или 0,68 нФ, или 0,00068 мкФ (импортная кодовая маркировка 681).

Маркировка конденсатора n75K — это значит 750 пФ, или 0,75 нФ, или 0,00075 мкФ (импортная кодовая маркировка 751).

Далее: конденсаторы с маркировкой 102 — 0,001 мкФ, потом конденсаторы с маркировкой 104 — 0,01 мкФ, затем пленочные конденсаторы одного китайского производителя.

Михаил Дмитриенко, Алма-Ата, 2012 г

Комментарии

Alekfilimon

С подобными деталями всегда непонятно. Смотришь на плату, там такие конденсаторы, смотришь по схеме — на советских схемах обычно все элементы списком шли по типам — вроде бы это такой-то конденсатор. А на других таких же платах совсем другие конденсаторы стоят, а по схеме все те же.

Вы не зарегистрированы?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий