Калькулятор для расчета делителя напряжения

Калькулятор для расчета делителя напряжения

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом виде: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Калькулятор для расчета делителя напряжения

Чтобы задать режим работы транзистора, стабилитрона или операционного усилителя, надо приготовить для них определённое напряжение. Чаще всего этим занимается делитель напряжения — простая схема из двух резисторов. Раньше мне всегда хватало калькуляторов на сайте joyta.ru. Но когда был нужен делитель с подстроечным резистором, приходилось вручную добавлять его сопротивление то к одному, то к другому плечу, чтобы узнать диапазон регулировки. Однажды мне это надоело, и я решил сделать удобный инструмент для расчётов любых делителей.

Получились три таблички в форматах:

LibreOffice 6.3 (.ods)

Excel 97-2003 (.xls)

На каждом листе-калькуляторе есть краткая инструкция, а здесь я расскажу о них подробно.

«Сложный» делитель (подбор сопротивления, расчёт напряжений)

На первый взгляд эта разновидность делителя кажется сложной, а формулы и вовсе отпугивают. Однако подстроечный резистор, включённый по схеме потенциометра, делает схему очень предсказуемой. Сопротивление всегда постоянно, поэтому ток делителя не меняется, и высчитать диапазон регулировки напряжения очень просто.

Калькулятор построен так, что после расчётов можно распечатать его страницу со всеми результатами. Если вдруг понадобится пересчитать делитель — есть формулы на картинке. Справа висит таблица стандартных номиналов радиодеталей — чтобы вы не кошмарили магазины мифическими резисторами на 77 кОм.

Инструкция:
1. Задать входное напряжение .
2. Установить и в нули. обнулится автоматически.
3. Подобрать такие и , чтобы было близким к нужному.
4. Для точной регулировки укажите максимальное сопротивление подстроечного резистора .
5. Калькулятор выдаст диапазон регулировки (, ) и текущее значение . Последнее можно менять, увеличив сопротивление .
6. В реальную схему вместо потенциометра можно поставить постоянные и рассчитанных номиналов.

Ещё калькулятор умеет считать напряжение самого простого двухрезисторного делителя. Для этого надо указать значения и при и = 0.

Замечание вообще про любые делители напряжения:
Ток делителя должен быть в 10 и более раз больше, чем ток нагрузки. Иначе её сопротивление войдёт в состав , и собьёт настройку. Поэтому делители используются там, где токи небольшие — до нескольких десятков миллиампер. Если же вы надумали сделать автомобильную зарядку для телефона через делитель — вы погорячились. И резисторы ваши тоже очень быстро разгорячатся на десяти амперах. Не надо так.

Делитель с подстройкой верхнего плеча (расчёт сопротивления, расчёт напряжений)

Здесь нижний вывод подстроечного резистора соединён со средним выводом и выходом делителя, поэтому фактически входит в состав — верхнего плеча.

Этот калькулятор чуть удобнее — он рассчитывает и для заданного выходного напряжения и . Не придётся долго перебирать номиналы, чтобы попасть в нужный диапазон напряжений.

Инструкция:
1. Задать входное и выходное напряжения , .
2. Установить , и в нули.
3. Выбрать из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст расчётное значение суммы и .
4. Задать стандартный номинал — меньше, чем сумма .
5. Указать максимальное сопротивление подстроечного резистора . Итоговая сумма должна быть больше расчётного значения. Чем ближе к сумме и чем меньше , тем уже диапазон регулировки , .
6. В графу можно внести точное значение резистора, чтобы увидеть, какое при этом будет напряжение на выходе . И для реальной схемы дополнить конкретно этим .

Читайте также  Подключение датчика движения к лампе

Можно рассчитать и простой делитель на двух резисторах, если указать значения и при и = 0.

Делитель с подстройкой нижнего плеча (расчёт сопротивления, расчёт напряжений)

Схема наоборот — здесь верхний вывод подстроечного резистора соединён со средним выводом и выходом делителя, поэтому фактически входит в состав — нижнего плеча.

Этот калькулятор считает по заданному выходному напряжению, и .

Инструкция:
1. Задать входное и выходное напряжения , .
2. Установить , и в нули.
3. Выбрать из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст расчётное значение .
4. Задать максимальное значение и (опционально) . Чем меньше , тем уже будет диапазон регулировки , .
5. Задать стандартный номинал , близкий к рассчитанному.
6. Калькулятор рассчитает и диапазон регулировки , .
7. В графу можно внести точное значение резистора, чтобы скорректировать . И для реальной схемы дополнить конкретно этим .

Как и раньше, делитель на двух резисторах можно рассчитать, указав значения и при и = 0.

Делитель напряжения

Такие устройства применяют для создания нужного напряжения в определенном узле электрической схемы. Это необходимо для обеспечения функциональности регуляторов, фильтров, датчиков. С помощью представленных ниже сведений можно узнать, как рассчитать падение напряжения на резисторе самостоятельно и с применением автоматизированных калькуляторов. Наглядные примеры и квалифицированные рекомендации пригодятся на практике.

Резистивный делитель напряжения

В общем случае устройства этого типа выполняют преобразование по формуле Uвых=Uвх*К, где:

  • Uвх (вых) – напряжения на входе и выходе, соответственно;
  • К – корректирующий множитель, обозначающий передающие способности узла.

Если взять первый пример из рис. выше, для уточнения сути процессов подойдет второй закон Кирхгофа. В соответствии с этим правилом, общее значение напряжений на последовательно соединенных резисторах будет равно сумме ЭДС на каждом элементе. Так как ток не изменяется в замкнутом контуре, для расчета можно использовать закон Ома:

U (напряжение) = I (ток) * R (электрическое сопротивление)

Нижнюю часть схемы (плечо) используют для получения необходимого изменения входного параметра.

Виды и принцип действия

В данной публикации подробно рассмотрен резистивный делитель напряжения. Подразумевается линейность характеристики цепи. В таких схемах упрощен расчет сопротивления для понижения напряжения до необходимого уровня. При подключении источника постоянного тока происходит деление напряжений прямо пропорционально значениям электрических сопротивлений нижнего и верхнего плеча.

Если составить аналогичную схему с конденсаторами, то на вход для поддержания нормальной функциональности придется подать синусоиду. В этом случае также будет выполнено распределение напряжений на элементах с емкостными характеристиками. Однако этот процесс надо рассматривать в динамике, с учетом частоты и соответствующего изменения амплитуды. Аналогичную методику применяют при работе с индуктивными компонентами.

Значения реактивных сопротивлений:

По формулам видно, что сопротивление конденсатора/ катушки обратно (прямо) пропорционально емкости/ индуктивности. Соответственно выбирают значения элементов для деления напряжения.

В представленных примерах принимают бесконечно большим внутреннее сопротивление нагрузки. Для реальных расчетов пользуются более сложными формулами с поправочными коэффициентами. Учитывают действительные комплексные характеристики цепей.

К сведению. В стабилизаторах напряжения и некоторых иных устройствах сопротивление плеча делителя обладает нелинейными параметрами.

Схема делителя напряжения на резисторах

Такие схемы используют для уменьшения выходного напряжения до нужного значения. Деление выполняют в пропорциях, которые предусмотрены конструкторским проектом. Необходимо учитывать реальное влияние нагрузки. Уточняют мощность потребления, чтобы подобрать подходящий резистор нижнего плеча.

Расчет делителя напряжения на резисторах

В простейшей схеме применяют два резистора. При необходимости количество компонентов увеличивают для обеспечения ступенчатой регулировки. Чтобы рассчитать делитель напряжения, калькулятор онлайн использовать не обязательно. Приведенная ниже подробная инструкция поможет получить точный результат собственными силами за несколько минут.

Формула делителя напряжения

Для примера взяты определенные значения:

  • Входного постоянного напряжения (Uвх) – 20 Вольт;
  • Сопротивления резисторов R1 и R2 – 20 и 50 кОм, соответственно.

Уменьшение входного напряжения в два раза получится при равных значениях сопротивлений резисторов. Для настоящего примера придется рассчитать пропорцию, пользуясь формулой закона Ома:

Подставив исходные значения, несложно узнать силу тока, протекающего по данной последовательной цепи:

20/ (20 000 + 50 000) = 0,000286 А

На отдельных элементах падения напряжения составят:

  • UR1 = 0,000286 * 20 000 = 5,72 V;
  • UR2 = 0,000286 * 50 000 = 14,3 V.

Для непосредственного расчета напряжения на рабочем плече можно пользоваться формулой:

UR2 = Uвх * R2/ (R1+R2)

Расчет делителя напряжения калькулятором онлайн

Соответствующие программы предлагают посетителям «Паяльник» и другие специализированные сайты бесплатно и без регистрации. В стандартной форме заполняют «окошки» с напряжением на входе и выходе. После подтверждения автоматически выполняется расчет с отображением значений электрических сопротивлений резисторов и рассеиваемых мощностей.

Как понятно из примера, основные формулы не отличаются повышенной сложностью. Однако автоматизированный расчет делителя напряжения на резисторах онлайн (online) позволяет выполнять многократные теоретические эксперименты с минимальными затратами времени. Такой инструмент пригодится для точного определения основных параметров делителя.

Таблица расчетов

Входное напряжение Uвх, V Эл. сопротивление, Ом Рассеиваемая мощность, Вт Напряжение на выходе Uвых, V
R1 R2 R1 R2
12 1000 2000 0,016 0,032 8
12 50000 4545 0,00242 0,00022 1
12 50000 550000 0,00002 0,00022 11,5
12 100 200 0,16 0,32 8

Приведенные цифры демонстрируют, что для существенного уменьшения Uвых сопротивление R1 должно быть значительно больше R2. Обратные пропорции применяют для примерного равенства напряжений на входе и выходе.

Совокупные потери в цепи определяют по рассеиваемой мощности. Чем меньше сопротивление, тем сильнее ток. Для самостоятельных расчетов пользуются формулой:

Применение

Использование такой схемотехники на практике демонстрируют следующие примеры. Для расчетов электрических параметров без учета сопротивления нагрузки подойдут рассмотренные выше ручные и автоматизированные методики.

Потенциометры

Если резистор оснастить ползунком и соответствующим приводом, сопротивления можно будет менять плавно. Это решение позволяет точнее менять напряжения на выходе, по сравнению с дискретными схемами. Главный недостаток – усложнение конструкции, что, кроме удорожания, снижает надежность. Приходится обеспечивать герметичность рабочей зоны для исключения загрязнения и предотвращения коррозийных процессов.

Резистивные датчики

В этом варианте пользуются способностью некоторых материалов увеличивать/ уменьшать электрическое сопротивление под воздействием температуры, светового потока, других внешних воздействий. Созданный на основе этих принципов датчик устанавливают в плечо делителя. По уровню напряжения на выходе контролируют изменение соответствующих параметров.

Цепи обратной связи в усилителях

Таким решением обеспечивают необходимый коэффициент усиления. На представленной ниже схеме этот параметр не будет никогда ниже единицы. Для повышения уровня преобразования увеличивают значение сопротивления R2 по отношению к R1.

Простейшие электрические фильтры

Для фильтрации заменяют конденсатором резисторы R1 или R2. В первом варианте устройство беспрепятственно пропускает высокочастотные составляющие. При снижении частоты до определенного уровня реактивное сопротивление увеличивается, препятствует прохождению тока. Аналогичным образом делают изменения в нижнем плече делителя с целью отсечения низких частот.

Усилитель напряжения

Переменным резистором изменяют уровень сигнала для получения необходимой громкости звучания. В таких устройствах применяют элементы с логарифмической характеристикой изменения сопротивления, что хорошо соответствует естественному механизму восприятия человеческими органами слуха.

Параметрический стабилизатор напряжения

В таких схемах нижнее плечо делителя можно создать с применением стабилитрона. Его вольтамперные характеристики выбирают таким образом, чтобы выходное напряжение сохраняло нужное значение при изменении входных параметров.

Ограничения в применении

Из приведенных в таблице примеров расчетов хорошо видно, как значительно увеличиваются потери при уменьшении сопротивления цепи. Энергия расходуется впустую для нагрева окружающей среды. При большой мощности рассеивания приходится использовать принудительные системы охлаждения, пассивные радиаторы.

В приведенных расчетах не учитывалась нагрузка. Если добавить соответствующее реальным условиям сопротивление, образуются дополнительные потери в параллельной цепи.

На первой части рисунка изображен типовой делитель, обеспечивающий выходное напряжение 5 V. При потреблении тока 0,01 А сопротивление нагрузки составит 0,5 кОм. Пользуясь формулой расчета для параллельной цепи, несложно выяснить суммарное значение R = 1/(1/R2 + 1/Rнагрузки) = 0,25 кОм. Это добавление уменьшит плановое значение Uвых до 3,46 V.

Читайте также  Листовой сельдерей. Выращиваниелистового сельдерея на приусадебном участке

Уменьшением R2 можно снизить вредное влияние на выходное напряжение (4,75 V). Однако такой способ, приведенный на второй части рисунка, сопровождается значительными потерями энергии. Ток будет проходить по участку с меньшим сопротивлением, не выполняя полезные функции. В данном примере необходимо выбрать R1, рассчитанный на мощность не менее 2 Вт, чтобы обеспечить надежную работу устройства.

Нормативно-техническая документация

Изучить стандарты по данной теме можно в ГОСТе 11282-93. Стандарт действует с 1 января 1996 г. Последние изменения сделаны 12 сентября 2018 г.

В документе приведены сведения о допустимых погрешностях, допусках и других нормативах.

Видео

Калькулятор для расчета делителя напряжения

Программа «Rectifier 1.0» предназначена для расчета мостового выпрямителя по заданным пользователем параметрам. Программа не только расчитывает необходимые для конструирования выпрямителя характеристики, но также предлагает пользователю варианты выпрямительных диодов и номинал конденсатора фильтра.

Расчёты для микросхем:
* LM317 (LM150, LM350) регулятор напряжения

* LH317 (LM150, LM350) регулятор тока

* L200 регулятор тока и напряжения
* 78xx регулятор тока и напряжения

Программа для расчета магнитной проницаемости материала феритового сердечника распространенных типов.
Автор: Юрий Илитич.
Статья http://radio-hobby.org/

Программа рассчитывает длину порта фазоинвертора, а так же необходимый и минимально возможный диаметры.

GRAND v1.2 калькулятор

Программа для проведения электротехнических расчетов

Induct — программа для расчета различных катушек колебательного контура

Rectifier 1.0 — расчет мостового выпрямителя.

RadioAmCalc 1.20 Free Домашняя страничка автора

«Калькулятор Радиолюбителя» поможет провести расчеты при проектировании любительских радиоэлектронных устройств. Программа бесплатна и свободна для некоммерческого распространения.
С помощью Калькулятора можно:

  • рассчитать трансформатор при различных исходных данных
    (в большинстве программ невозможно, например, поменять магнитную проницаемость сердечника)
  • рассчитать однослойные и многослойные катушки индуктивности
  • определить сопротивление резистора по цветным полоскам
  • определить сопротивление SMD-резистора
  • определить емкость конденсатора по цветным полоскам
  • рассчитать пассивный LC и RC фильтры нижних и верхних частот
  • провести электротехнические расчеты по формулам

Best RadioCalc v.1.2

Радиолюбительский калькулятор, позволяет быстро сделать большинство самих нужных радиолюбительских расчетов. Основные возможности программы: — все расчеты по закону Ома при минимуме двох известных значений (сила тока I, напряжение U, сопротивление R, мощность P); — подбор номиналов резисторов, конденсаторов и катушек индуктивности (до 10-ти резисторов, конденсаторов или катушек индуктивности в соединении) для параллельного и последовательного соединения. Вычисляет Rобщ (Собщ, Lобщ) на основе R1-R10 (С1-С10, L1-L10) или подбирает нужный R1 (С1, L1) для указанного Rобщ (Собщ, Lобщ) с учетом резисторов R2-R10 (или конденсаторов С2-С10, катушек индуктивности L2-L10) при необходимости для любого типа соединения как последовательного так и параллельного; — расчет времени работы аккумулятора и реверсивные расчеты любого из значений; — расчет коэффициента усиления и силы тока транзистора (реверсивные расчеты тока базы, тока коллектора, коэффициента усиления); — расчет емкостного сопротивления конденсатора в цепи переменного тока (реверсивные расчеты частоти тока, емкости конденсатора, емкостного сопротивления); — реверсивные расчеты индуктивного сопротивления, полного сопротивления и добротности катушки индуктивности в цепи переменного тока. Вычисления делаются автоматически при вводе номиналов с возможностью отключения автоматического расчета при вводе. Возможен переход в иной диапазон расчета. Имеется возможность сохранения всех значений в текстовый файл. При необходимости, возможно включить параметр «Поверх всех окон». В версии 1.2 добавилось несколько исправлений у улучшений в работе калькулятора, добавлена автокоррекция вывода результата при значениях меньше нуля, а также появилась возможность вручную изменять точность вывода результата методом округления до нужного разряда вплоть до 16 знаков в дробной части.

Поддерживается определение:
Резисторы
Конденсаторы
Транзисторы
Диоды
Стабилитроны
Варикапы
Индуктивности
Чип компоненты

Вывод характеристик:
программа обладает собственной базой данной по характеристикам, и после определения типа элемента (транзистор, диод . ) выводится его характеристика.

Справочник:
если же Вы знаете тип элемента, то можете вызывать справочник и переключаясь по базе элементов (транзистор, диод . ) найти интересующий Вас элемент и просмотреть его характеристики.

В дополнение — справочник может работать и в режиме вывода габаритных размеров корпусов (например ТО-220 . ) и в режиме вывода функциональных схем (база микросхем).

Справочная система:
программа снабжена собственной справочной системой, которая содержит описание программы, радиоэлементов, обучающие примеры и т.д.

Визуальный набор:
для облегчения определения типа/номинала элемента реализован визуальный набор, т.е. на образце рисуется/закрашивается необходимый знак/цвет.

Дополнительные возможности:
— программа снабжена сменными панелями инструментов (для каждого типа элемента остаются только его метки, что не загромождает интерфейс и позволяет быстро ориентироваться в программе)
— имеется модуль «Калькулятор» содержащий серию электротехнических расчетов;
— если вы разработчик воспользуйтесь модулем «Объединить базы»;

Программа бесплатна и свободна для использования и распространения. В последней версии Coil32 v7.1 доступны:

  • Расчет числа витков катушки при заданной индуктивности
  • Расчет индуктивности катушки для заданного числа витков
  • Расчет добротности для однослойных катушек
  • Расчет индуктивности многослойной катушки по ее омическому сопротивлению
  • Расчет длины провода, необходимого для намотки многослойной катушки
  • Расчет длины провода, необходимого для намотки катушки на ферритовом кольце

Источник http://coil32.narod.ru

Скачать >>>>>

Источник http://aes.at.ua

Анализатор антенн MMANA — русская версия

Одна из лучших программ для моделирования антенн. Это единственный анализатор антенн на русском языке. Оригинальная японская версия написана Makoto Mori JE3HHT в 2000 году. Русская версия и интерфейсы сделаны Игорем Гончаренко DL2KQ (он же EU1TT) в 2001-2002 годах.

Прочие расчеты

Расчет несимметричного согласующего П или Т аттенюатора

Производится расчет П или Т образного несимметричного согласующего аттенюатора (входное и выходное сопротивления не одинаковы). По заданным значениям входного и выходного сопротивлений, затухания по мощности и входного напряжения отыскиваются сопротивления резисторов, входная и выходная мощности, мощности рассеиваемые на резисторах, напряжение на выходе, а так же отношение напряжений на входе и выходе в дБ. Работает в терминальном режиме в ОС windows и linux, приложен исходный код.

Расчет симметричного П или Т аттенюатора

Производится расчет П или Т образного симметричного аттенюатора. По заданным значениям входного и выходного сопротивлений, затухания и входного напряжения отыскиваются сопротивления резисторов, входная и выходная мощности, мощности рассеиваемые на резисторах, напряжение на выходе. Работает в терминальном режиме в ОС windows и linux, приложен исходный код.

​Таблицы и графики коэффициентов и функций Берга

PDF файл, содержащий таблицы и графики коэффициентов и функций Берга. Данные используется при расчете каскадов работающих с отсечкой тока: усилительных каскадов радиопередающей аппаратуры, умножителей частоты и т.п.

Программа минимизации функции многих переменных методом деформируемого многогранника (по Нелдеру и Миду)

Реализован алгоритм минимизации функции многих переменных без вычисления производных. В основу положен метод деформируемого многогранника, известный также как модифицированный симплекс-метод. Программа («Simplex») написана на языке ExcelVusualBasic и опубликована в сети Интернет для свободного пользования. Предлагается в качестве простого и эффективного средства решения широкого круга вычислительных задач, таких как: решение линейных и нелинейных уравнений и их систем, минимизация суммы квадратов для линейных и нелинейных регрессий, поиск экстремумов функций без ограничений и с ограничениями в виде равенств и неравенств и т.п. Описан алгоритм и порядок использования программы, дан ряд примеров решения наиболее типичных задач.

Прогноз распространения радиоволн

Программа предназначена для расчетов прогнозов прохождения радиоволн на радиолюбительских диапазонах.

Программа позволяет для заданных параметров приемо-передающей аппаратуры:

  • Производить расчет максимально применимых частот (МПЧ) и оптимально применимых частот (ОРЧ) на трассах любой протяженности и на любые даты.
  • Вычислять возможное соотношение сигнал/шум в точке приема.
  • Вычислять временные отрезки времени, на которых связь может быть осуществлена.
  • Вычислять вероятность связи для заданной трассы.

При наличии подключенного Интернета получать данные:

  • о текущих индексах геомагнитной активности Ар и Ki,
  • о текущем состоянии ионосферы,
  • об оценке условий распространения радиоволн,
  • о значение числа Вольфа (W),
  • о значение потока солнечного излучения на частоте 10.7 см (SFI),
  • последние ионограммы зондов вертикального зондирования ионосферы (Москва, Италия, Прага).

Калькулятор Т и Н образных аттенюаторов

Позволяет, введя входную и выходную мощности (в любых единицах), входное и выходное сопротивление получить расчет несимметричного Т-образного и симметричного Н-образного аттенюаторов. Одновременно высчитывается мощность рассеивания на элементах аттенюатора. Написана на С++ на основе формул расчета от SM0VPO ( Harry Lythall) . В отличии от некоторых онлайн версий корректно работает с дробными значениями.

Калькулятор реактивных сопротивлений

Программа позволяет вычислять реактивное сопротивление конденсаторов и катушек индуктивности в цепях переменного тока.

Калькулятор П и О образных аттенюаторов

Калькулятор позволяет получить расчет несимметричного П-образного и симметричного О-образного аттенюаторов. Для расчетов необходимо указать входную и выходную мощности (в любых единицах), входное и выходное сопротивление.

Одновременно высчитывается мощность рассеивания на элементах аттенюатора. Написана на С++ на основе формул расчета от SM0VPO ( Harry Lythall) . В отличии от некоторых онлайн версий корректно работает с дробными значениями.

Формула расчета падения делителя напряжения на резисторе: онлайн калькулятор || Делитель напряжения на резисторах онлайн калькулятор расчета

Резистивный делитель напряжения

В общем случае устройства этого типа выполняют преобразование по формуле Uвых=Uвх*К, где:

  • Uвх (вых) – напряжения на входе и выходе, соответственно;
  • К – корректирующий множитель, обозначающий передающие способности узла.

U (напряжение) = I (ток) * R (электрическое сопротивление)

Нижнюю часть схемы (плечо) используют для получения необходимого изменения входного параметра.

Виды и принцип действия

В данной публикации подробно рассмотрен резистивный делитель напряжения. Подразумевается линейность характеристики цепи. В таких схемах упрощен расчет сопротивления для понижения напряжения до необходимого уровня. При подключении источника постоянного тока происходит деление напряжений прямо пропорционально значениям электрических сопротивлений нижнего и верхнего плеча.

Цепи с реактивными характеристиками

Если составить аналогичную схему с конденсаторами, то на вход для поддержания нормальной функциональности придется подать синусоиду. В этом случае также будет выполнено распределение напряжений на элементах с емкостными характеристиками. Однако этот процесс надо рассматривать в динамике, с учетом частоты и соответствующего изменения амплитуды. Аналогичную методику применяют при работе с индуктивными компонентами.

Значения реактивных сопротивлений:

По формулам видно, что сопротивление конденсатора/ катушки обратно (прямо) пропорционально емкости/ индуктивности. Соответственно выбирают значения элементов для деления напряжения.

В представленных примерах принимают бесконечно большим внутреннее сопротивление нагрузки. Для реальных расчетов пользуются более сложными формулами с поправочными коэффициентами. Учитывают действительные комплексные характеристики цепей.

К сведению. В стабилизаторах напряжения и некоторых иных устройствах сопротивление плеча делителя обладает нелинейными параметрами.

Расчет делителя напряжения на резисторах

Такие схемы используют для уменьшения выходного напряжения до нужного значения. Деление выполняют в пропорциях, которые предусмотрены конструкторским проектом. Необходимо учитывать реальное влияние нагрузки. Уточняют мощность потребления, чтобы подобрать подходящий резистор нижнего плеча.

В простейшей схеме применяют два резистора. При необходимости количество компонентов увеличивают для обеспечения ступенчатой регулировки. Чтобы рассчитать делитель напряжения, калькулятор онлайн использовать не обязательно. Приведенная ниже подробная инструкция поможет получить точный результат собственными силами за несколько минут.

Для примера взяты определенные значения:

  • Входного постоянного напряжения (Uвх) – 20 Вольт;
  • Сопротивления резисторов R1 и R2 – 20 и 50 кОм, соответственно.

Самостоятельный расчет резистивного делителя онлайн

20/ (20 000 50 000) = 0,000286 А

На отдельных элементах падения напряжения составят:

  • UR1 = 0,000286 * 20 000 = 5,72 V;
  • UR2 = 0,000286 * 50 000 = 14,3 V.

Соответствующие программы предлагают посетителям «Паяльник» и другие специализированные сайты бесплатно и без регистрации. В стандартной форме заполняют «окошки» с напряжением на входе и выходе. После подтверждения автоматически выполняется расчет с отображением значений электрических сопротивлений резисторов и рассеиваемых мощностей.

Как понятно из примера, основные формулы не отличаются повышенной сложностью. Однако автоматизированный расчет делителя напряжения на резисторах онлайн (online) позволяет выполнять многократные теоретические эксперименты с минимальными затратами времени. Такой инструмент пригодится для точного определения основных параметров делителя.

Входное напряжение Uвх, V Эл. сопротивление, Ом Рассеиваемая мощность, Вт Напряжение на выходе Uвых, V
R1 R2 R1 R2
12 1000 2000 0,016 0,032 8
12 50000 4545 0,00242 0,00022 1
12 50000 550000 0,00002 0,00022 11,5
12 100 200 0,16 0,32 8

Приведенные цифры демонстрируют, что для существенного уменьшения Uвых сопротивление R1 должно быть значительно больше R2. Обратные пропорции применяют для примерного равенства напряжений на входе и выходе.

Применение

Использование такой схемотехники на практике демонстрируют следующие примеры. Для расчетов электрических параметров без учета сопротивления нагрузки подойдут рассмотренные выше ручные и автоматизированные методики.

Потенциометры

Если резистор оснастить ползунком и соответствующим приводом, сопротивления можно будет менять плавно. Это решение позволяет точнее менять напряжения на выходе, по сравнению с дискретными схемами. Главный недостаток – усложнение конструкции, что, кроме удорожания, снижает надежность. Приходится обеспечивать герметичность рабочей зоны для исключения загрязнения и предотвращения коррозийных процессов.

Принципиальная схема потенциометра

Резистивные датчики

В этом варианте пользуются способностью некоторых материалов увеличивать/ уменьшать электрическое сопротивление под воздействием температуры, светового потока, других внешних воздействий. Созданный на основе этих принципов датчик устанавливают в плечо делителя. По уровню напряжения на выходе контролируют изменение соответствующих параметров.

Таким решением обеспечивают необходимый коэффициент усиления. На представленной ниже схеме этот параметр не будет никогда ниже единицы. Для повышения уровня преобразования увеличивают значение сопротивления R2 по отношению к R1.

Делитель напряжения в цепи обратной связи

Для фильтрации заменяют конденсатором резисторы R1 или R2. В первом варианте устройство беспрепятственно пропускает высокочастотные составляющие. При снижении частоты до определенного уровня реактивное сопротивление увеличивается, препятствует прохождению тока. Аналогичным образом делают изменения в нижнем плече делителя с целью отсечения низких частот.

Переменным резистором изменяют уровень сигнала для получения необходимой громкости звучания. В таких устройствах применяют элементы с логарифмической характеристикой изменения сопротивления, что хорошо соответствует естественному механизму восприятия человеческими органами слуха.

В таких схемах нижнее плечо делителя можно создать с применением стабилитрона. Его вольтамперные характеристики выбирают таким образом, чтобы выходное напряжение сохраняло нужное значение при изменении входных параметров.

Из приведенных в таблице примеров расчетов хорошо видно, как значительно увеличиваются потери при уменьшении сопротивления цепи. Энергия расходуется впустую для нагрева окружающей среды. При большой мощности рассеивания приходится использовать принудительные системы охлаждения, пассивные радиаторы.

В приведенных расчетах не учитывалась нагрузка. Если добавить соответствующее реальным условиям сопротивление, образуются дополнительные потери в параллельной цепи.

Влияние сопротивления нагрузки

На первой части рисунка изображен типовой делитель, обеспечивающий выходное напряжение 5 V. При потреблении тока 0,01 А сопротивление нагрузки составит 0,5 кОм. Пользуясь формулой расчета для параллельной цепи, несложно выяснить суммарное значение R = 1/(1/R2 1/Rнагрузки) = 0,25 кОм. Это добавление уменьшит плановое значение Uвых до 3,46 V.

Уменьшением R2 можно снизить вредное влияние на выходное напряжение (4,75 V). Однако такой способ, приведенный на второй части рисунка, сопровождается значительными потерями энергии. Ток будет проходить по участку с меньшим сопротивлением, не выполняя полезные функции. В данном примере необходимо выбрать R1, рассчитанный на мощность не менее 2 Вт, чтобы обеспечить надежную работу устройства.

Источник: gk-rosenergo.ru

Читайте также  Геотекстиль и георешётка
Оцените статью
klub-winx
Добавить комментарий