Огнезащита стальных конструкций СП
Огнезащита стальных конструкций СП
ОГНЕЗАЩИТА СТАЛЬНЫХ КОНСТРУКЦИЙ
Правила производства работ
Fire protection of steel structures. Execution of work
Дата введения 2019-07-25
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛЬ — АО «НИЦ «Строительство» — ЦНИИСК им.В.А.Кучеренко
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
3 ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
6 ВВЕДЕН ВПЕРВЫЕ
В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минстрой России) в сети Интернет
Введение
Свод правил подготовлен авторским коллективом АО «НИЦ «Строительство» — ЦНИИСК им.В.А.Кучеренко (руководитель работы — д-р техн.наук, проф. А.И.Звездов, отв. исполнитель — д-р техн.наук, проф. И.И.Ведяков, исполнители — д-р техн.наук, проф. Ю.В.Кривцов, канд.техн.наук И.Р.Ладыгина; канд.хим.наук М.А.Комарова).
1 Область применения
Настоящий свод правил распространяется на работы по монтажу огнезащитных покрытий, устанавливаемых на несущие стальные конструкции жилых, общественных, промышленных или административных зданий и сооружений (далее — конструкции) и устанавливает общие требования к этим покрытиям.
2 Нормативные ссылки
В настоящем своде правил использованы нормативные ссылки на следующие документы:
ГОСТ 30247.0-94 (ИСО 834-75) Конструкции строительные. Методы испытаний на огнестойкость. Общие требования
ГОСТ 30247.1-94 Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции
ГОСТ 31149-2014 (ISO 2409:2013) Материалы лакокрасочные. Определение адгезии методом решетчатого надреза
ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния
ГОСТ 31993-2013 (ISO 2808:2007) Материалы лакокрасочные. Определение толщины покрытия
ГОСТ 32299-2013 Материалы лакокрасочные. Определение адгезии методом отрыва
ГОСТ 32702.2-2014 (ISO 16276-2:2007) Материалы лакокрасочные. Определение адгезии методом Х-образного надреза
ГОСТ Р 53293-2009 Пожарная опасность веществ и материалов. Материалы, вещества и средства огнезащиты. Идентификация методами термического анализа
ГОСТ Р 53295-2009 Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности
СП 2.13130.2012 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты (с изменением N 1)
СП 14.13330.2018 «СНиП II-7-81* Строительство в сейсмических районах»
Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте федерального органа в области стандартизации в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.
3 Термины и определения
В настоящем своде правил применены термины по ГОСТ Р 53293, ГОСТ 31993, СП 2.13130, а также следующий термин с соответствующим определением:
3.1 огнезащитный состав; ОС: Материал, предназначенный для огнезащитной обработки конструкций (объектов).
4 Общие положения огнезащитных покрытий стальных конструкций
4.1 Огнезащитное покрытие монтируется на стальные конструкции таким образом, чтобы вся обогреваемая поверхность конструкции оказалась закрыта.
4.2 Для нанесения огнезащитного покрытия на стальные конструкции применяют два варианта:
— нанесение покрытия по периметру конструкции;
— устройство защитного кожуха вокруг конструкции.
Расчет периметра обогреваемой поверхности выполняется при проектировании огнезащиты. Площадь обогреваемой поверхности выбирается из соответствующего сортамента либо рассчитывается в зависимости от схемы огневого воздействия на конструкцию.
4.3 Способы огнезащиты выбирают с учетом требуемого предела огнестойкости стальной конструкции, ее типа и ориентации в пространстве (колонны, стойки, ригели, балки, связи), вида нагрузки, действующей на конструкцию (статическая, динамическая), температурно-влажностного режима эксплуатации и производства работ по огнезащите (сухие, мокрые процессы), степени агрессивности окружающей среды, увеличения нагрузки на конструкцию за счет огнезащиты, эстетических требований и др.
4.4 В условиях пожара стальные конструкции в основном теряют свою несущую способность через 15 мин с момента начала огневого воздействия, поэтому в случаях, когда требуемый предел огнестойкости превышает это значение, стальные колонны, фермы и балки подлежат огнезащите.
4.5 Контроль соблюдения требований нормативных документов по подготовке и нанесению (монтажу) средств огнезащиты на стальные конструкции должен включать:
— проверку наличия на предприятии производителя средства огнезащиты системы качества с контролем огнезащитной эффективности готовой продукции;
— проверку целостности упаковки и наличие на ней заводской этикетки с указанием наименования (марки) средства огнезащиты, наименования производителя (завода) и его почтового адреса;
— проверку пригодности технического оборудования для приготовления и нанесения (монтажа) средств огнезащиты;
— проверку адгезии, а также соответствия марки и толщины грунтовочного слоя, допустимого для нанесения (монтажа) средства огнезащиты;
— проверку наличия на рабочих местах инструкций или выписок из технологических карт по приготовлению и нанесению средств огнезащиты;
— контроль соблюдения технологии нанесения (монтажа) средств огнезащиты;
— мониторинг условий окружающей среды, допустимых для выполнения огнезащитных работ;
— контроль толщины сухого слоя средства огнезащиты с учетом грунтовочного слоя и финишного покрытия по окончании огнезащитных работ.
4.6 Для определения качества производимых и применяемых средств огнезащиты проводятся контрольные испытания отобранных проб огнезащитных составов на соответствие ГОСТ Р 53293. Испытания проводятся в испытательных лабораториях (центрах), допущенных к проведению данных испытаний в порядке, установленном действующим законодательством Российской Федерации.
4.7 В целях определения качества выполненной огнезащитной обработки стальных конструкций проводятся визуальный осмотр нанесенных огнезащитных покрытий для выявления необработанных мест, трещин, отслоений, изменения цвета, повреждений, а также измерения толщины нанесенного покрытия. Внешний вид и толщина слоя огнезащитного покрытия, нанесенного на защищаемую поверхность, должны соответствовать требованиям нормативных документов на покрытия конкретных типов.
4.8 Нормативные документы на средства огнезащиты считаются несоблюденными, если выпускаемая продукция, выполненные работы (оказанные услуги), режимы эксплуатации не соответствуют хотя бы одному из их требований.
4.9 Огнезащитные составы должны иметь техническую документацию (технологические регламенты, паспорта качества), разработанную производителем и зарегистрированную в установленном порядке.
4.10 Техническая документация должна содержать следующие показатели и характеристики огнезащитных составов:
— группу огнезащитной эффективности;
— расход для определенной группы огнезащитной эффективности;
— толщину огнезащитного покрытия для определенной группы огнезащитной эффективности;
— плотность (объемную массу) огнезащитных составов;
— сведения по технологии нанесения — способы подготовки поверхности, виды и марки грунтов, клеящих составов, число слоев, условия сушки, способы крепления и порядок изготовления (монтажа);
— виды и марки дополнительных (защитных, декоративных) поверхностных слоев огнезащитных составов в случае их применения;
— гарантийный срок и условия хранения средства огнезащиты;
— мероприятия по технике безопасности и пожарной безопасности при хранении огнезащитных составов и производстве работ;
— гарантийный срок и условия эксплуатации (предельные значения влажности, температуры окружающей среды и т.п.);
— возможность и периодичность замены или восстановления ОС в зависимости от условий эксплуатации;
— сведения о технологии подготовки ОС к огнезащитной обработке (если поставка ОС осуществляется не в готовом для применения виде);
— методы контроля качества и приемки выполненной огнезащитной обработки.
4.11 Проектирование и производство работ по огнезащите конструкций должны осуществляться организациями, допущенными к осуществлению данных видов деятельности в порядке, установленном действующим законодательством Российской Федерации.
4.12 Испытания по определению огнезащитной эффективности ОС должны проводиться профильными организациями, допущенными к осуществлению данного вида деятельности в порядке, установленном действующим законодательством Российской Федерации.
4.13 При использовании дополнительного (защитного, декоративного) поверхностного слоя средств огнезащиты огнезащитные характеристики следует определять с учетом этого слоя.
4.14 Показатели и характеристики огнезащитных составов, за исключением группы огнезащитной эффективности, определяются разработчиком технической документации, который несет установленную действующим законодательством Российской Федерации ответственность за их точность.
4.15 Нанесение огнезащитного состава на поверхности, ранее обработанные пропиточными, лакокрасочными и другими составами, в том числе огнезащитными составами других марок, допускается при положительных результатах исследований на совместимость. Исследования на совместимость должны включать установление огнезащитных, эксплуатационных свойств и срока службы огнезащитной обработки.
4.16 Упаковкой, условиями хранения и транспортирования огнезащитного состава должны быть обеспечены их огнезащитные свойства в течение установленного срока годности.
4.17 Не допускается применение средств огнезащиты на неподготовленных (или подготовленных с нарушениями требований технической документации на эти средства) поверхностях объектов защиты.
4.18 Средства огнезащиты для стальных строительных конструкций следует применять при условии оценки предела огнестойкости конструкций с нанесенными средствами огнезащиты с учетом всех элементов крепления и способов их установки по ГОСТ 30247.0, ГОСТ 30247.1 и разработки проекта огнезащиты.
4.19 Выбор вида огнезащиты осуществляется с учетом режима эксплуатации объекта защиты и установленных сроков эксплуатации огнезащитного покрытия. В случае строительства зданий и сооружений на площадках сейсмичностью 7, 8 и 9 баллов при применении средств огнезащиты должны выполняться требования СП 14.13330.
4.20 Огнезащиту стальных несущих конструкций в зданиях категорий А и Б следует выполнять средствами огнезащиты, обладающими достаточной взрывоустойчивостью. Не допускается применять плитные, минераловатные и другие средства огнезащиты, которые могут разрушиться при возможном взрыве.
4.21 Для зданий степеней огнестойкости I и II, а также для зданий и сооружений повышенного уровня ответственности не допускаются к применению огнезащитные минераловатные теплоизоляционные материалы ввиду недостаточной клеящей способности применяемых клеевых составов к минеральным волокнам.
Огнезащита стальных конструкций СП
Учитывая действующие НТД, в чьей зоне ответственности (разработчика КМ или ТХ части рабочей документации) находится расчет и подбор огнезащитных материалов для покрытия стальных элементов, прописанных в пункте 6.10.5.18 СП 4.13130.2013, а именно «предел огнестойкости «юбок» колонных аппаратов и опор резервуаров с легковоспламеняющимися жидкостями, хранящимися под давлением, и сжиженными углеводородными газами должен быть не менее R 120»?
1. Пункт 3.5 свода правил СП 2.13130.2012 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты гласит: «проект огнезащиты: Проектная документация и (или) рабочая документация, содержащая обоснование принятых проектных решений по способам и средствам огнезащиты строительных конструкций для обеспечения их предела огнестойкости по ГОСТ 30247, с учетом экспериментальных данных по огнезащитной эффективности средства огнезащиты, а также результатов прочностных и теплотехнических расчетов строительных конструкций с нанесенными средствами огнезащиты».
Согласно пункту 11.8 свода правил СП 28.13330.2017 Защита строительных конструкций от коррозии, «средства огнезащиты следует применять в соответствии с разработанным проектом огнезащиты. Проект должен содержать данные об огнезащитной эффективности средств огнезащиты, прочности, результаты теплотехнических расчетов по обеспечению пределов огнестойкости, а также сведения об условиях применения и эксплуатации огнезащиты».
При этом, согласно пункту 4.3 ГОСТ Р 53295-2009 Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности и пункту 4.11 свода правил СП 433.1325800.2019 Огнезащита стальных конструкций. Правила производства работ, проектирование и производство работ по огнезащите конструкций должны осуществляться организациями, имеющими лицензию на данные виды деятельности.
2. В более развёрнутом (по сравнению с СП 2.13130.2012 и СП 28.13330.2017) виде состав проекта огнезащиты приведён, например, в разделе 6 стандарта СТО АРСС 11251254.001-016 «Проектирование огнезащиты несущих стальных конструкций многоквартирных жилых зданий» (документ доступен для ознакомления по адресу: https://steel-development.ru/mediatsentr/STO%20ARSS.pdf), согласован ФГБУ ВНИИПО МЧС России письмом от 30.12.2016 года № 8187эп-13-2-3 и зарегистрирован в качестве нормативного документа по пожарной безопасности (ВНПБ 55-17) письмом департамента надзорной деятельности и профилактической работы МЧС России от 19.01.2017 № 19-2-4-172 (см. информацию по адресу: https://steel-development.ru/mediatsentr/standard.pdf), а именно:
«Проект (рабочий проект) огнезащиты выполняется в соответствии с требованиями ГОСТ 21.1101 и должен иметь следующие разделы:
- Введение (сведения о заказчике, исполнителе, основание для выполнения работы, краткая аннотация).
- Техническое задание (объект проектирования; нормативные ссылки; техническая документация; описание объекта и конструктивные решения; противопожарные требования).
- Оценка огнестойкости несущих стальных конструкций (элементный анализ конструктивной схемы здания; определение приведенной толщины металла конструкций; определение критических температур; результаты расчета незащищенных стальных конструкций).
- Выбор огнезащиты для стальных конструкций (критерии выбора огнезащиты для несущих стальных конструкций; аналитический обзор способов и средств огнезащиты стальных конструкций).
- Разработка оптимальных вариантов огнезащиты для стальных конструкций объекта (обобщение результатов расчетов, выбора марки и толщины огнезащиты, сведение результатов в общую итоговую таблицу).
- Расчет общего объема использования огнезащиты для стальных конструкций объекта* (спецификация расходных материалов)
- Технология нанесения (монтажа) огнезащиты* (инструкция по применению огнезащиты для стальных конструкций).
- Техника безопасности*.
- Выводы и рекомендации (краткие сведения о фактических пределах огнестойкости конструкций, выбранные марки огнезащитных материалов, ссылки на сводные таблицы по применению и расходам средств огнезащиты, дополнительные рекомендации и условия применения огнезащиты).
* Допускается не представлять в проекте огнезащиты или выносить их в Приложение».
3. Учитывая изложенное, проект огнезащиты рассматриваемых стальных конструкций должен разрабатываться аттестованными специалистами лицензированной организации и согласно подпункта л) пункта 14 Положения о составе разделов проектной документации и требованиях к их содержанию включаться в состав раздела 4 ПД «Конструктивные и объёмно-планировочные решения», то есть к разработке подраздела ПД «Технологические решения», предусмотренного подпунктом ж) пункта 15 Положения, проект огнезащиты отношения не имеет.
Что нужно знать об огнезащите металлических конструкций?
Метод определения группы огнезащитной эффективности
Сертификация средств огнезащиты для металлоконструкций проводится по ГОСТ Р 53295-2009 «Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности».
Стальная колонна двутаврового сечения № 20 высотой 1700 мм (приведенная толщина металла 3,4 мм) или стальная пластина 600х600х5 мм защищаются огнезащитным покрытием в соответствии с технологией его применения, и испытываются на установке для определения огнестойкости стальных конструкций. К металлической поверхности образцов в разных местах прикрепляются термопары для регистрации температуры металлической поверхности. При этом фиксируется время, в течение которого металлическая поверхность достигла критической температуры (500 о С) в условиях стандартного пожара. Группа огнезащитной эффективности определяется по времени достижения металлоконструкцией критической температуры.
Группы огнезащитной эффективности
Время* | ГОСТ Р 53295-2009 | Пример обозначения |
15 минут | 7-я группа | R15 |
30 минут | 6-я группа | R30 |
45 минут | 5-я группа | R45 |
60 минут | 4-я группа | R60 |
90 минут | 3-я группа | R90 |
120 минут | 2-я группа | R120 |
150 минут | 1-я группа | R150 |
Базовые термины нормативных документов
Пределы огнестойкости строительных конструкций должны соответствовать принятой степени огнестойкости зданий и сооружений по таблице 21 № 123-ФЗ (ч.2 ст. 87 № 123-ФЗ):
Требования нормативных документов по ограничению применения средств огнезащиты
В зданиях I и II степеней огнестойкости для обеспечения требуемого предела огнестойкости несущих элементов здания следует применять конструктивную огнезащиту. Применение тонкослойных огнезащитных покрытий для стальных конструкций, являющихся несущими элементами зданий I и II степеней огнестойкости, допускается для конструкций с приведенной толщиной металла не менее 5,8 мм. (п. 5.4.3 СП 2.13130.2012);
Конструктивная огнезащита: способ огнезащиты строительных конструкций, основанный на создании на обогреваемой поверхности конструкции теплоизоляционного слоя средства огнезащиты.
К конструктивной огнезащите относятся толстослойные напыляемые составы, штукатурки, облицовка плитными, листовыми и другими огнезащитными материалами, в том числе на каркасе, с воздушными прослойками, а также комбинации данных материалов, в том числе с тонкослойными вспучивающимися покрытиями (п. 3.2 СП 2.13130.2012, п. 3.6 ГОСТ Р 53295-2009).
Тонкослойное вспучивающееся огнезащитное покрытие (огнезащитная краска): способ огнезащиты строительных конструкций, основанный на нанесении на обогреваемую поверхность конструкции специальных красок или лакокрасочных систем по ГОСТ Р 28246, предназначенных для повышения предела огнестойкости строительных конструкций и обладающих огнезащитной эффективностью. Принцип действия огнезащитной краски (лакокрасочной системы) основан на химической реакции, активируемой при воздействии пожара, в результате которой толщина огнезащитного покрытия многократно увеличивается, образуя на обогреваемой поверхности конструкции теплоизоляционный слой, защищающий конструкцию от нагревания (п. 3.13 ГОСТ Р 53295-2009, аналог п. 3.3 СП 2.13130.2012 – нет ограничения толщины 3 мм).
Средства огнезащиты для строительных конструкций следует использовать при условии оценки предела огнестойкости конструкций с нанесенными средствами огнезащиты по ГОСТ 30247, с учетом способа крепления (нанесения), указанного в технической документации на огнезащиту, и (или) разработки проекта огнезащиты (п. 5.4.3 СП 2.13130.2012).
Не допускается использовать огнезащитные покрытия и пропитки в местах, исключающих возможность периодической замены или восстановления, а также контроля их состояния.
Выбор вида огнезащиты осуществляется с учетом режима эксплуатации объекта защиты и установленных сроков эксплуатации огнезащитного покрытия. В случае строительства зданий и сооружений в сейсмическом районе при применении средств огнезащиты должны выполняться требования СП 14.13330.2011 (п. 5.4.3 СП 2.13130.2012).
Критерии выбора огнезащитного материала для стальных конструкций
— Требуемая огнестойкость;
— Тип защищаемой конструкции (колонны, стойки, ригели, балки, связи);
— Условия эксплуатации, необходимость защиты от повреждений;
— Удельный вес покрытия (утяжеление конструкции);
— Сезонность нанесения;
— Момент нанесения (объект строящийся либо эксплуатируемый);
— Технологичность (сложность) нанесения;
— Возможность восстановления после повреждений;
— Требования к декоративному виду;
— Стоимость.
Сравнение факторов и воздействий, влияющих на огнезащитную эффективность средств огнезащиты
Проектирование огнезащиты КМ
Страница 1 из 3 | 1 | 2 | 3 | > |
Защиту металлоконструкций можно разделить на 2 вида — несущих конструкций из прокатного профиля и тонкостенных конструкций (воздуховодов)
Про первые — их доля на в последние годы возросла, и, как известно, металлы обладают чувствительностью к высоким температурам и к воздействию огня. При температуре, в среднем 500 градусов, металл переходи в пластичное состояние, что снижает прочностные характеристики. Фактический предел огнестойкости стальных конструкций зависит от толщины элементов сечения и действующих напряжений, при этом он составляет от 0,1 до 0,4 ч, в то время как минимальные значения требуемых пределов огнестойкости основных строительных конструкций, в том числе металлических, составляют от 0,25 и до 2,5 ч в зависимости от степени огнестойкости зданий и типа конструкций.
Задача огнезащиты металлических конструкций заключается в создании на поверхности элементов конструкций теплоизолирующих экранов, выдерживающих высокие температуры и непосредственное действие огня. Наличие этих экранов позволяет замедлить прогревание металла и сохранять конструкции свои функции при пожаре в течение заданного периода времени.
Огнезащиту металлических конструкций осуществляют как традиционными методами (обетонирования, оштукатуривания цементно-песчанными растворами, использования кирпичной кладки), так и новых современных методов, основанных на механизированном нанесении облегченных материалов и легких заполнителей — асбеста, вспученного перлита и вермикулита, минерального волокна, обладающих высокими теплоизоляционными свойствами или основанных на использовании плитных и листовых теплоизоляционных материалов (гипсокартонных и гипсоволокнистых листов, асбестоцементных и перлитофосфогелевых плит и др.).
Современные методы огнезащиты металлических конструкций включают использование: теплоизоляционных штукатурок, состоящих из цемента или гипса, перлитового песка или вермикулита, жидкого стекла; огнезащитных покрытий из асбеста или гранулированного минерального волокна, жидкого стекла, цемента и др.; вспучивающихся красок, представляющих сложные системы органических и неорганических компонентов. Огнезащитное действие этих красок основано на вспучивании нанесенного состава при температурах 170-200 °С и образовании пористого теплоизолирующего слоя, толщина которого составляет несколько сантиметров. В зависимости от толщины слоя штукатурного состава, облегченного покрытия, конструктивных огнезащитных листов и плит обеспечивается предел огнестойкости стальных конструкций от 0,75 до 2,5 ч. Вспучивающиеся краски используются для огнезащиты стальных конструкций в течение 0,75-1 ч. Расчет толщины покрытия ведется по приведенной толщине металлаю
Обеспечение предела огнестойкости стальных конструкций 0,5 ч достигается путем увеличения их массивности за счет развития размера сечений.
Огнезащита воздуховодов (второй вид) — одна из самых сложных задач в области противопожарной защиты объектов. Огнезащита воздуховодов может быть обеспечена только в случае применения материалов, про которые прямо указано в сертификатах ПБ: «Воздуховод огнестойкий с огнезащитным покрытием. «. На практике не везде легко осуществить полноценную огнезащиту воздуховодов. Часто проблема заключается в трудном доступе к элементам воздуховодов. Например, когда транзитный воздуховод прямоугольного сечения расположен в труднодоступном месте (2 стороны прилегают к стенам, зазор примерно 1 см). Огнезащита таких воздуховодов может решаться несколькими методами или комплексно. Огнезащитные покрытия, предназначенные именно для этих целей крайне редки. Так же сложно найти материалы, в сертификате которых написано, что они предназначены для огнезащиты воздуховодов.
Одним из современных огнезащитных составов, используемых для огнезащиты воздуховодов и имеющим неограниченный срок службы является DOSSOLAN 3000, DOSSOLAN НОЕСО FII/1 . Он представляет собой мелковолокнистый материал, предназначенный для применения в качестве огнезащитного толстослойного покрытия (штукатурки) с пределом огнестойкости до 3 часов включительно. Применяется для огнезащиты воздуховодов, металлоконструкций и деревянных конструкций как внутри помещений, так и на открытом воздухе под навесом, если огнезащитное покрытие не подвергается непосредственному воздействию дождя, снега, града и т.п. Выдерживает без образования трещин незначительные смещения и вибрации конструкции, на которую наносятся методом распыления (полусухое торкретирование).
Способы огнезащиты металлических конструкций
Главная / Блог / Способы огнезащиты металлических конструкций
Способы огнезащиты металлических конструкций
Железобетонные и металлические конструкции являются основой несущих конструкций зданий, которые должны защищаться от воздействия огня при пожарах. В строительном законодательстве установлены требования по времени огнестойкости конструкций, в течение которого они должны сохранять свои несущие способности, а также способы защиты металлических конструкций. Сохранение несущей способности конструкций при пожаре важно в первую очередь для безопасного вывода людей из здания.
Зачем нужна защита металлоконструкций от огня?
Может возникнуть вопрос — зачем вообще нужна защита металлоконструкций от огня, если металл не горит? Аналогичный вопрос можно задать про железобетоные конструкции.
Проблема заключается в том, что при нагреве до 500 o С металлические конструкции теряют прочность и несущую способность под воздействием своих нагрузок. Те же процессы происходят в железобетонных конструкциях, прочность которых в нормальных условиях обеспечивается в значительной степени каркасом из стальной арматуры.
Предел огнестойкости металла без огнезащиты составляет от R10 до R15. Это значит, что металлоконструкции без огнезащиты будут выполнять свои функции в случае пожара в течение 10-15 минут. Это время не удовлетворяет нормативам для объектов, предполагающих нахождение людей.
Рассмотрим подробнее требования к огнезащите металлических конструкций, с учетом предела огнестойкости объектов.
Выбор вида огнезащиты. Предел огнестойкости зданий
Выбор способов огнезащиты определяется требованиями к пределу огнестойкости самих зданий, которые сформулированы в СП 2.13130.2020 «Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты».
В зданиях I и II степени огнестойкости для несущих конструкций, которые обеспечивают прочность и устойчивость здания, включая колонны и фермы, несущие стены, перекрытия и диафрагмы, огнестойкость этих элементов должна обеспечиваться применением конструктивных решений и материалов:
1. Конструктивная огнезащита (покрытие теплооизоляционными негорючими плитами или толстослойными составами).
2. Тонкослойные вспучивающиеся огнезащитные краски.
Особые условия предусмотрены для сейсмических зон – в таких зонах применяемые средства должны соответствовать требованиям СП 14.13330 по прочности при нагрузках, возникающих при землетрясениях. Также, средства огнезащиты нельзя использовать в таких местах, где отсутствует возможность контроля из состояния, ремонта или замены.
Огнезащитные краски (п. 2) могут применяться в зданиях I и II степени огнестойкости только для металлических конструкций с приведенной толщиной металла более 5,8 миллиметров. Рассмотрим подробнее этот показатель.
Расчет приведенной толщины металла
По НПБ 236-97 «Огнезащитные составы для стальных конструкций», приведенная толщина металла считается по формуле:
Описание:
— ПТМ — приведенная толщина металла (мм),
— S — площадь сечения (мм 2 ),
— P — нагреваемый периметр (мм).
Пример расчета: двутавровая балка 40Ш1 (ГОСТ 26020-83).
Рассматриваем вариант с обогревом со всех сторон.
Высота | Ширина | Толщина стенки | Толщина полки |
388 мм | 300 мм | 9,5 мм | 14 мм |
Площадь поперечного сечения: S = 12235 мм 2 .
Обогреваемый периметр: P = 1919 мм.
ПТМ = S / P = 12235 / 1919 = 6,38 мм.
Виды огнезащиты металлических конструкций
Итак, для огнезащиты металлических конструкций в зданиях могут использоваться конструктивная огнезащита либо вспучивающиеся тонкослойные краски.
Конструктивная огнезащита металлоконструкций – это огнезащитный теплоизоляционный слой из специальных материалов, предотвращающий нагрев металлических конструкций от огня.
Материалы конструктивной огнезащиты:
- минераловатные плиты,
- гипсокартонные листы,
- асбестовые листы,
- кирпич,
- напыляемые толстослойные огнезащитные составы и штукатурки.
Как правило, материалы для огнезащиты металла делятся на три группы:
1. Конструктивная огнезащита — облицовка минераловатными плитами, гипсокартоном, кирпичом |
2. Конструктивная огнезащита — толстослойные составы и обмазки | 3. Тонкослойные вспучивающиеся огнезащитные краски |
До R150 | От R90 до R150 | От R30 до R120 |
Рассмотрим подробнее эти группы
- Конструктивная огнезащита, реализуемая облицовкой металлоконструкций огнестойкими теплоизоляционными материалами, например, плитами из минеральной ваты и гипсокартоном — традиционный способ защиты металлоконструкций от огня.
Преимуществом этого способа является высокая огнезащитная способность. К недостаткам можно отнести высокую трудоемкость и стоимость работ.
Применение конструктивной огнезащиты требует разработки проекта огнезащиты, в котором учитываются способы крепления огнезащитных конструкций, соответствующие технической документации на систему и протоколам испытаний огнезащиты. - Конструктивная огнезащита из толстослойных огнезащитных обмазок и составов.
Такие материалы не вспучиваются при нагревании. Они обеспечивают изоляцию от высокой температуры за счет сочетания низкой теплопроводности и достаточной толщины изоляционного слоя.
Толстослойные напыляемые огнезащитные составы обладают преимуществами:- высокая огнезащитная эффективность,
- технологичность и высокая скорость нанесения,
- высокая прочность и долговечность облицовки,
- меньший вес огнезащитных материалов, по сравнению с п. 1, создающий меньшие нагрузки на конструкции,
- как правило, меньшая стоимость, по сравнению с п. 1.
Огнезащитные обмазки и штукатурки широко применяются для огнезащиты воздуховодов, как вентиляционных, так и воздуховодов систем дымоудаления.
- Огнезащитные краски.
Тонкослойные вспучивающиеся огнезащитные краски обеспечивают защиту металлических конструкций от огня за счет расширения от нагрева. При этом вокруг металла создается толстое покрытие из кокса, имеющего маленькую теплопроводность и высокую огнестойкость. Это обеспечивает необходимое время защиты металла от высоких температур.
Огнезащитные краски дают существенные преимущества в случаях, когда проект допускает их применение:- огнезащитная эффективность до R120,
- практически отсутствует дополнительная нагрузка на конструкции,
- выгодная стоимость огнезащиты,
- высокая скорость и технологичность нанесения,
- возможность проведения работ в широком диапазоне температур, от +50 o С до -15 o С,
- низкий расход материала,
- долгий гарантированный срок службы,
- эстетичный внешний вид, который может выступать в роли финишной отделки.
В строительном законодательстве присутствует множество требований к конструкциям зданий, с точки зрения пожарной безопасности. Имеется много различных показателей и нормативов, которые должны быть выполнены для успешной приемки построенного объекта.
Учесть все эти факторы, выбрать правильные и при этом наиболее технологичные и экономичные решения по огнезащите, которые будут обеспечивать безопасность находящихся в здании людей – задача проектной организации, разрабатывающей проект огнезащиты.
огнезащита стальных несущих конструкций
Введение
Область применения различных способов огнезащиты определяют с учетом требуемого предела огнестойкости металлической конструкции, ее типа и ориентации в пространстве (колонны, стойки, ригели, балки, связи), вида нагрузки, действующей на конструкцию (статическая, динамическая), температурно-влажностного режима эксплуатации и производства работ по огнезащите (сухие, мокрые процессы), степени агрессивности окружающей среды, увеличение нагрузки на конструкцию за счет огнезащиты, эстетических требований и др.
Строительные металлические конструкции, не распространяющие огонь, имеют неорганическую структуру и являются негорючими. В условиях пожара металлические конструкции в основном теряют свою несущую способность через 15 минут (0,25 часа) [Л1], поэтому в тех случаях, когда требуемый предел огнестойкости превышает это значение, металлические колонны, фермы и балки подвергают огнезащите.
Требование по огнезащите конструкций сооружений регламентируется соответствующими СНиП, начиная от СНиП 21-01-97 «Пожарная безопасность зданий и сооружений» и СНиП, конкретизирующих требования к данному типу сооружений, например, Промышленные предприятия – СНиП 2.09.03-89 «Сооружения промышленных предприятий» или СНиП 2.08.01-89* «Жилые здания», СНиП 2.08.02-89 «Общественные здания» и т.д.
Огнезащита должна обеспечить высокую сопротивляемость конструкций действию огня и высоких температур, иметь низкую теплопроводность и достаточную адгезию к металлу. Она должна быть долговечной, иметь низкую стоимость, технология нанесения должна быть доступной.
Характеристика металлических конструкций и требования к их огнестойкости
В соответствии с требованиями СНиП 21-01-97 , здания делятся на 5 степеней огнестойкости в зависимости от значений пределов огнестойкости основных строительных конструкций, принимаемых в часах или минутах, и пределов распространения огня по ним, принимаемым в сантиметрах. Нормированию подлежат: стены, перегородки, колонны, элементы лестничных клеток, перекрытий и покрытий. При несоответствии хотя бы одного из элементов здания (сооружения) требуемым значениям степень огнестойкости всего здания уменьшается до степени огнестойкости, где значение фактического предела огнестойкости не менее требуемого.
В зависимости от степени огнестойкости здания или сооружения нормы пожарной безопасности регламентируют их назначение, противопожарные разрывы, этажность, площадь пожарных отсеков, длину путей эвакуации и т.п.
Строительные конструкции характеризуются огнестойкостью и пожарной опасностью.
Предел огнестойкости строительных конструкций устанавливается по времени наступления одного или последовательно нескольких нормируемых для данной конструкции признаков предельных состояний:
•потери несущей способности,
•потери целостности,
•потери теплоизолирующей способности.
Пределы огнестойкости строительных конструкций устанавливаются по ГОСТ 30247.
По пожарной опасности строительные конструкции подразделяются на 4 класса:
КО (непожароопасные)
К1 (малопожароопасные)
К2 (умереннопожароопасные)
К3 (пожароопасные)
Класс пожарной опасности строительных конструкций устанавливают по ГОСТ 30403.
Факторами, определяющими воздействие пожара на стальные конструкции, являются по мнению авторов [Л2]: уровень рабочих напряжений, температура прогрева конструкции и длительность воздействий. Влияние повышенных температур пожара приводит к изменению прочностных и деформационных свойств применяемых сталей, появлению температурных напряжений и деформаций, а длительность процесса обусловливает возможность возникновения значительных деформаций ползучести. Все это может привести к получению стальными конструкциями необратимых деформаций, потери ими несущей или ограждающей способности. В свою очередь, потеря ограждающей способности может явиться причиной распространения пожара в смежных помещениях здания со стальным пространственным каркасом, а потеря несущей способности конструкций может вызвать обрушение самих конструкций.
С ростом температуры теплопроводность сталей падает, а удельная теплоемкость увеличивается.
По данным [Л3], в процессе нагрева несущие стальные конструкции находятся под действием постоянной рабочей нагрузки, а металл этих конструкций нагревается в напряженном состоянии. В этом случае рост деформации и снижение прочности металла зависят от режима его нагрева, так как эти процессы происходят во времени, и, следовательно, связаны с явлением ползучести.
До определенной температуры деформация стали увеличивается примерно с постоянной скоростью в основном за счет температурного расширения. Затем начинает проявляться температурная ползучесть стали, и скорость роста деформации образца плавно возрастает. За пределами ε аt = 3 %, вследствие резкого увеличения ползучести, кривая полных деформаций стали быстро приближается к вертикали. Следовательно, можно принять, что при значении ε аt = 3 % достигается предел прочности нагретой стали.
Незащищенные несущие металлические конструкции, как правило, имеют очень низкий предел огнестойкости, ч.:
стальные — в среднем 0,25
Исключение составляют стальные мембранные покрытия и колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать 0,75 ч. Низкая огнестойкость большинства металлических конструкций объясняется главным образом их тонкостенностью, т.е. малой теплоемкостью.
Так, например, теплоемкость стальной колонны коробчатого сечения 300x300x10 мм, имеющей предел огнестойкости 0,23 ч, при 500°С составляет
63×10 3 Дж/м, а железобетонная колонна сплошного сечения 300×300 мм, у которой предел огнестойкости превышает 2 часа имеет теплоемкость 260×10 3 Дж/м, т.е. в четыре раза больше.
Повышение теплоемкости стальных колонн путем применения сплошного сечения размером, например, до 300×300 мм не позволяет увеличить их огнестойкость до величины, которая характерна для колонн из железобетона. Причиной этого является огромная теплопроводность стали, благодаря чего все сечение металлической конструкции быстро прогревается до высоких температур, в то время как центральная часть железобетонных колонн (ядро сечения) до высоких температур прогревается очень медленно.
Способы огнезащиты металлических конструкций
Огнезащита предназначена для повышения фактического предела огнестойкости конструкций до требуемых значений. Эту задачу выполняют путем использования теплозащитных и теплопоглощающих экранов, специальных конструктивных решений, огнезащитных составов, технологических приемов и операций, а также применением материалов пониженной горючести. Огнезащитное действие экранов основывается либо на их высокой сопротивляемости тепловым воздействиям при пожаре, сохранением в течение заданного времени теплофизических характеристик при высоких температурах, либо на их способности претерпевать структурные изменения при тепловых воздействиях с образованием коксоподобных пористых структур, для которых характерна высокая изолирующая способность.
Расположение огнезащитных экранов может осуществляться либо непосредственно на поверхности защищаемых конструктивных элементов, либо на откосе с помощью специальных мембранкоробов, каркасов, закладных деталей.
Огнезащита предусматривает применение конструктивных методов, использование теплозащитных экранов из облегченных составов, наносимых на поверхность конструкций высокопроизводительными индустриальными методами.
Конструктивные методы огнезащиты включают обетонирование, обкладку кирпичом, оштукатуривание, использование крупноразмерных листовых и плитных огнезащитных облицовок, применение огнезащитных конструктивных элементов (например огнезащитных подвесных потолков), заполнение внутренних полостей конструкций, подбор необходимых сечений элементов, обеспечивающих требуемые значения пределов огнестойкости конструкций, разработку конструктивных решений узлов примыкания, сопряжений и соединений конструкций.
Кирпичную и бетонную облицовку применяют [Л4] для повышения предела огнестойкости стальных конструкций до 2 ч и более. При этом бетонную облицовку толщиной 50 мм и более армируют стальным каркасом (хомутом и продольными стержнями) во избежание преждевременного ее обрушения при действии огня. Для исключения этого явления в случае кирпичной облицовки толщиной в 1/4 кирпича (65 мм) в ее швах также устанавливаются стальные анкеры или хомуты.
Цементно-песчаная штукатурка толщины 25-60 мм, наносимая по стальной сетке, используется для повышения предела огнестойкости металлических конструкций до 2 -х и более часов.
При толщине 40-60 мм штукатурку армируют двойной сеткой, что предохраняет ее от преждевременного обрушения при пожаре.
Отмеченные выше облицовки достаточно надежны и долговечны. Однако они существенно увеличивают массу конструкций и является трудоемкими. Стремление снизить массу огнезащитной облицовки привело к разработке легких штукатурок на основе перлита, вермикулита и других эффективных материалов. Эти облицовки имеют малую плотность (200-600 кг/см 3 ) и поэтому низкую теплопроводность. Они могут применяться для повышения огнестойкости конструкций до 4 -х часов.
Для огнезащитной облицовки можно использовать полужесткие минераловатные плиты, укрепляемые с помощью стальных анкеров и каркасов. В этом случае необходимо предусматривать антикоррозионную защиту конструкций и достаточную отделку наружной поверхности минераловатной облицовки декоративными материалами.
Для повышения предела огнестойкости 0,75 ч — 1,5 ч применяют огнезащитные краски, лаки, эмали. Они выполняют следующие функции: являются защитным слоем на поверхности материалов, поглощают тепло, выделяют ингибиторные газы, высвобождают воду. Подразделяются на две группы: невспучивающиеся и вспучивающиеся. Невспучивающиеся краски при нагревании не увеличивают толщину своего слоя. Вспучивающиеся краски при нагревании увеличивают толщину слоя в 10-40 раз. Как правило, вспучивающиеся краски более эффективны, так как при тепловых воздействиях происходит образование вспененного слоя, представляющего собой закоксовавшийся расплав негорючих веществ (минеральный остаток). Образование этого слоя происходит за счет выделяющихся при нагревании газо- и парообразных веществ. Коксовый слой обладает высокими теплоизоляционными качествами.
Наиболее технологичным является устройство тонкослойных покрытий с использованием вспучивающихся составов на органической основе. Их огнезащитные свойства проявляются за счет увеличения толщины слоя и изменения теплофизических характеристик при интенсивном тепловом воздействии в условиях пожара.
При воздействии высоких температур покрытие вспучивается, значительно увеличивается в объеме с образованием коксового пористого слоя. Вспучивающиеся покрытия являются многокомпозиционными системами, состоящими из связующего, антипирена и пленкообразователей. При воздействии высоких температур эти вещества разлагаются, выделяя пары или газы, которые блокируют конвективный перенос тепла к защищаемой поверхности, подавляя пламя вблизи слоя покрытия и уменьшают радиационный поток тепла.
Образующийся пористый слой обугливается покрытие является теплоизоляционным слоем между источником тепла и защищаемой поверхностью. Объем образовавшегося обугленного слоя, в зависимости от состава, может составлять от 5 до 200 первоначальных объемов покрытия.
Коэффициент вспучивания зависит не только от природных свойств материала, но и от условий его нагревания (максимальной температуры и скорости подъема ее). Поэтому для одного и того же материала, обладающего способностью вспучиваться при нагревании, коэффициент вспучивания может колебаться в очень широких пределах. Причиной вспучивания и образования пористости служит выделение водяного пара или газа при высоких температурах. Одни виды сырья при нагреве размягчаются, что способствует возникновению в них пор, другие растрескиваются и распадаются на более мелкие частицы, чем до нагрева, что также приводит к образованию высокопористой структуры.
По мнению [Л.5], механизм работы вспучивающегося покрытия заключается в следующем. При одностороннем нагреве покрытия в его подповерхностном слое формируется переменное по толщине и во времени температурное поле, а также выделяются газообразные продукты термического разложения полимерной или минеральной основы. В результате этого увеличивается пористость материала и в порах создается повышенное давление. В диапазоне температур (наружная поверхность — поверхность защищаемой конструкции) каркас пористого подповерхностного слоя проходит через пластичное (вязко-текучее) состояние и под действием внутреннего давления вытягивается до образования в «узких местах» разрывов — локальных трещин, через которые избыток газов пиролиза выте-кает в окружающую среду, взаимодействуя с ней. Локальные деформации каркаса, суммируясь по возрастающей во времени толщине пластичного слоя, создают эффект вспучивания — перемещение поверхности покрытия «навстречу» внешнему тепловому потоку.
По мере роста температуры каркас затвердевает и фиксируется в пространстве, образуя вспененный слой, в ячейках которого содержится азот и углекислый газ.
Современные огнезащитные составы и их свойства
Источник: