Передача электроэнергии на расстояние без проводов

Передача электроэнергии на расстояние без проводов

Беспроводное электричество. Работа и применение. Особенности

Беспроводное электричество стало известно с 1831 года, когда Майкл Фарадей открыл явление электромагнитной индукции. Он экспериментально установил, что меняющееся магнитное поле, порождаемое электрическим током, может индуцировать электрический ток в ином проводнике. Проводились многочисленные опыты, благодаря чему появился первый электрический трансформатор. Однако полноценно воплотить идею передачи электричества на расстоянии в практическом применении удалось лишь Николе Тесла.

На Всемирной выставке в Чикаго в 1893-м году он показал беспроводную передачу электричества, зажигая фосфорные лампочки, которые отстояли друг от друга. Тесла продемонстрировал множество вариаций по передаче электричества без проводов, мечтая, что в будущем данная технология позволит людям передавать энергию в атмосфере на большие расстояния. Но в это время это изобретение ученого оказалось невостребованным. Лишь век спустя технологиями Николы Теслы заинтересовались компании Intel и Sony, а за тем и иные компании.

Как это работает

Беспроводное электричество в буквальном смысле представляет передачу электрической энергии без проводов. Часто эту технологию сравнивают с передачей информации, к примеру, с Wi-Fi, сотовыми телефонами и радио. Беспроводная электроэнергия – это сравнительно новая и динамично развивающаяся технология. Сегодня разрабатываются методы, как безопасно и эффективно передавать на расстоянии энергию без перебоев.

Технология основана на магнетизме и электромагнетизме и базируется на ряде простых принципов работы. В первую очередь это касается наличия в системе двух катушек.

  • Система состоит из передатчика и приемника, генерирующих вместе переменное магнитное поле непостоянного тока.
  • Это поле создает напряжение в катушке приемника, к примеру, для зарядки аккумулятора или питания мобильного устройства.
  • При направлении электрического тока через провод вокруг кабеля появляется круговое магнитное поле.
  • На мотке проволоки, куда не поступает электрический ток напрямую, начнет поступать электрический ток от первой катушки через магнитное поле, в том числе вторую катушку, обеспечивая индуктивную связь.

Принципы передачи

До последнего времени наиболее совершенной технологией передачи электроэнергии считалась магнитно-резонансная система CMRS, созданная в 2007 году в Массачусетском технологическом институте. Данная технология обеспечивала передачу тока на расстояние до 2,1 метра. Однако запустить ее в массовое производство мешали некоторые ограничения, к примеру, высокая частота передачи, большие размеры, сложная конфигурация катушек, а также высокая чувствительность к внешним помехам, в том числе к присутствию человека.

Однако ученые из Южной Кореи создали новый передатчик электроэнергии, который позволит передавать энергию до 5 метров. А все приборы в комнате будут питаться от единого хаба. Резонансная система из дипольных катушек DCRS способна работать до 5 метров. Система лишена целого ряда недостатков CMRS, в том числе применяются довольно компактные катушки размерами 10х20х300 см, их можно незаметно установить в стены квартиры.

Эксперимент позволил передать на частоте 20 кГц:

  1. 209 Вт на 5 м;
  2. 471 Вт на 4 м;
  3. 1403 Вт на 3 м.

Беспроводное электричество позволяет запитывать современные большие ЖК-телевизоры, требующих 40 Вт, на расстоянии 5 метров. Единственное из электросети будет «выкачиваться» 400 ватт, однако не будет никаких проводов. Электромагнитная индукция обеспечивает высокий КПД, но на малом расстоянии.

Существуют и иные технологии, которые позволяют передавать электроэнергию без проводов. Наиболее перспективными из них являются:

  • Лазерное излучение . Обеспечивает защищенность сетей, а также большую дальность действия. Однако требуется прямая видимость между приемником и передатчиком. Работающие установки, применяющие питание от лазерного луча, уже созданы. Lockheed Martin, американский производитель военной техники и самолетов, испытал беспилотный летательный аппарат Stalker, который питается от лазерного луча и остается в воздухе в течение 48 часов.
  • Микроволновое излучение . Обеспечивает большую дальность действия, но имеет высокую стоимость оборудования. В качестве передатчика электроэнергии применяется радиоантенна, которая создает микроволновое излучение. На устройстве-приемнике стоит ректенна, которая преобразует в электроток принимаемое микроволновое излучение.

Данная технология дает возможность существенного удаления приемника от передатчика, в том числе нет прямой нужды прямой видимости. Но с увеличением дальности пропорционально увеличивается себестоимость и размеры оборудования. В то же время микроволновое излучение большой мощности, создаваемое установкой, может наносить вред окружающей среде.

Особенности

  • Самая реалистичная из технологий — беспроводное электричество на основе электромагнитной индукции. Но существуют ограничения. Ведутся работы по масштабированию технологии, но здесь появляются вопросы безопасности для здоровья.
  • Технологии передачи электричества при помощи ультразвука, лазера и микроволнового излучения также будут развиваться и тоже найдут свои ниши.
  • Орбитальные спутники с громадными солнечными батареями нуждаются в ином подходе, потребуется прицельная передача электроэнергии. Здесь уместен лазер и СВЧ. На данный момент нет идеального решения, однако имеется много вариантов со своими плюсами и минусами.
  • В настоящее время крупнейшие производители телекоммуникационного оборудования объединились в консорциум беспроводной электромагнитной энергии с целью создания всемирного стандарта для беспроводных зарядных устройств, которые действуют по принципу электромагнитной индукции. Из крупных производителей поддержку стандарта QI на ряде своих моделей обеспечивают Sony, Samsung, Nokia, Motorola Mobility, LG Electronics, Huawei, HTC. В скором времени QI станет единым стандартом для любых подобных устройств. Благодаря этому можно будет создавать беспроводные зоны подзарядки гаджетов в кафе, на транспортных узлах и в иных общественных местах.

Применение

  • Микроволновый вертолет. Модель вертолета имела ректенну и поднималась на высоту 15 м.
  • Беспроводное электричество применяется для питания электрических зубных щеток. Зубная щетка имеет полную герметичность корпуса и не имеет разъемов, что позволяет избежать удара током.
  • Питание самолетов при помощи лазера.
  • В продаже появились системы беспроводной зарядки мобильных устройств, которые можно использовать повседневно. Они работают на базе электромагнитной индукции.
  • Универсальная зарядная площадка. Они позволяют питать энергией большую часть популярных моделей смартфонов, которые не оборудованы модулем для беспроводной зарядки, в том числе обычные телефоны. Кроме самой зарядной площадки будет нужно купить чехол-приемник для гаджета. Он соединяется со смартфоном через USB-порт и через него заряжается.
  • На текущий момент на мировом рынке продается свыше 150 устройств до 5 Ватт, которые поддерживают стандарт QI. В будущем появится оборудование средней мощности до 120 Ватт.

Перспективы

Сегодня ведутся работы над крупными проектами, которые будут использовать беспроводное электричество. Это питание электромобилей «по воздуху» и бытовые электросети:

  • Густая сеть автозарядных точек позволит уменьшить аккумуляторы и значительно снизить себестоимость электромобилей.
  • В каждой комнате будут устанавливаться источники питания, которые будут передавать электроэнергию аудио- и видеоаппаратуре, гаджетам и бытовым приборам, оборудованными соответствующими адаптерами.

Беспроводное электричество: от идеи до реализации

  • Total 6

Из всех идей, над которыми работал инженер и физик Никола Тесла, а в этом списке были переменный ток, радио, пульт дистанционного управления (и это в конце XIX века), самой фантастической и трудно осуществимой была передача электрической энергии без проводов. И дело не в том, что сербский изобретатель не знал, как осуществить свой проект. Идея беспроводного электричества, как и электродвигатель, созданный в эпоху бурного развития нефтяной промышленности, не была оценена по достоинству и не получила поддержку от инвесторов и научного сообщества. Спустя десятилетия, когда электроприборы стали неотъемлемой частью нашего быта, система беспроводной передачи электричества (БПЭ) снова будоражит умы инженеров по всему миру. Каких результатов уже удалось достичь, и какие способы используется сегодня?

«Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое оборудование, которое даст вам тепло для приготовления пищи, а свет для чтения. Это оборудование поместиться в небольшой сумке, как обычный чемодан. В ближайшие годы беспроводные светильники будут столь же распространены на фермах, как и обычные электрические светильники в наших городах».

Никола Тесла, «The American Magazine», апрель 1921 года

Беспроводная передача электричества: что это

«Беспроводной» — одно из самых трендовых слов последнего времени: интернет, мобильные телефоны, наушники, зарядные устройства, радио. Эти технологии тоже можно считать видом беспроводной передачи энергии, но в них главенствующая роль отводиться информации (качеству ее передачи, скорости), а в случае с электричеством показателем эффективности является сохранность передаваемой энергии без использования электрической цепи из токопроводящих элементов.

Кто изобрел беспроводное электричество?

Во время выставки в Чикаго в 1893 году Никола Тесла продемонстрировал беспроводное освещение при помощи люминесцентных ламп. Сегодня подобный эксперимент может повторить кто угодно, достаточно встать с лампой дневного света под линией высокого напряжения. А в то время — было похоже на магический сеанс, поэтому пресса и очевидцы вознесли изобретателя на вершину популярности.

Но в научном мире нет единства, что именно Тесла создал беспроводное электричество: считается, что он доработал идею, которую уже развивали другие ученые.

В 1820 году Андре Мари Ампер записал закон, названный впоследствии в его честь, указывающий на то, что во время использования электрического тока образуется магнитное поле.

Спустя 11 лет Майклом Фарадеем был открыт закон индукции: в ходе опыта установил, что магнитное поле, генерируемое в одном проводнике, способно индуцировать ток в другом проводнике.

В 1864 году Джеймс Максвелл объединил имеющиеся теории, и вывел уравнение, описывающее электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

В 1891 году Никола Тесла улучшил передатчик волн, изобретенный Генрихом Герцом тремя годами ранее, и запатентовал его как устройство для радиочастотного энергоснабжения: патент No 454,622; «Система электрического освещения». Параллельно с сербским ученым, исследования электромагнитных волн ведут Александр Попов (Россия), Гульельмо Маркони (Италия), Джагдиш Боше (Индия).

Как работает беспроводное электричество: индукция

Несмотря на то, что последние десятилетия технологии активно развивались, один из самых популярных способов передачи электроэнергии без проводов, мало чем отличается от того, которым пользовался Фарадей. Одна резонансная медная катушка подключается к источнику питания, вторая — играет роль приемника.

Читайте также  Основные неисправности посудомоечных машин

Видео работы беспроводного электричества с использованием двух катушек наглядно демонстрирует и простоту технологии, и ее главную проблему – небольшой радиус действия. Также с его помощью невозможно передавать большие объемы энергии (катушки расплавятся) при том, что КПД около 40% (Тесла об этом писал еще в 1899 году).

Однако, нельзя сказать, что магнитная индукция не нашла своего применения. Сегодня технология активно используется для производства беспроводных зарядных устройств. Компания Apple 2017 году презентовала свои беспроводные зарядные устройства, как нечто революционное, хотя фактически этой новинке больше 100 лет.

Беспроводное электричество: популярные технологии

Помимо индукции, на которую делают главные ставки производители электрокаров и гаджетов, известны еще 3 способа: лазеры, микроволны, ультразвук. Ученые убеждены, что каждое из этих направлений может получить развитие в будущем.

  • Лазеры. Энергия передается путем преобразования ее в луч, которые направляется на фотоэлемент приемника. Таким способом можно передавать большие объемы энергии, но эти планы разбиваются об атмосферу Земли, из-за которой большая часть (около 60%) энергии рассеивается. Но в безвоздушных пространствах технология вполне жизнеспособна. Именно поэтому компании, осваивающие космические просторы, продолжают изучение лазерных технологий: в 2009 году NASA даже был организован конкурс с призовым фондом в $900 тыс. по лазерной БПЭ. Первое место заняла Laser Motive: на 1км и 0,5 кВт переданной непрерывной мощности. При том, что конечно цели достигли только 10% энергии, эксперимент назвали успешным.

  • Микроволны. Теоретически радиоволновую передачу энергии можно сделать направленной, используя полупроводники или лампы (циклотронный преобразователь энергии). Полупроводники сейчас активно используются во всем мире, но что касается передачи больших объемов энергии, то необходимо использовать и большее количество полупроводников. Это не только увеличивает стоимость проекта, но и появляется переизлучение, т.е. находиться близко у таких панелей – не безопасно. Но полупроводниковые системы показали высокую эффективность: более 80%. Это доказал еще Вильям Бараун в 1975 году, передав 30 квт на расстояние более 1 км. Создателями циклотронного преобразователя энергии являются советские ученые Владимир Савин и Владимир Ванке, хотя его КПД не превышает 70-80%, надежность достаточно высокая.
  • Ультразвук. Технология была представлена в 2011 году на выставке «The All Things Digital» (D9). Студенты Пенсильванского университета использовали ультразвуковой передатчик и приемник (преобразовывал улавливающее электричество). Радиус действия – около 10 метров. Недостатки: должна быть прямая видимость между «узлами», низкий КПД. Но, передаваемые ультразвуковые частоты, не оказывают воздействия на людей или животных.

Беспроводные зарядные устройства: использование в быту и инфраструктуре

Самым востребованным и популярным девайсом с использованием беспроводной передачи электроэнергии являются зарядные устройства. Это может быть не только смартфон или планшет поддерживающий технологию, но и робот-пылесос, электросамокат, электровелосипед и электрическая зубная щетка.

Универсальность беспроводных зарядок – несомненный плюс технологии. Их создают по стандарту Qi (читается как «Ци»), разработанному Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium): заряд на расстоянии до 4 см. Samsung и Xiaomi также выпускают универсальные беспроводные зарядки. Кстати, если Samsung EP-PG950 не может заряжать гаджеты через чехол, то для Xiaomi Mi Wireless Charging Pad – это не проблема.

Индукционные зарядки для электрических электросамокатов (кикскутеров) устанавливают в Германии. Easy Charge, созданная компаниями Metz и Intis, универсальная и может взаимодействовать с устройствами разных производителей, а благодаря тому, что зарядное выпускается в нескольких модификация (на одно или 5 мест), его можно использовать и в общественных местах.

Джошуа Смит (сотрудник компании Intel) совместно с Марин Солджачич – доцент кафедры физики MIT (Massachusetts Institute of Technology) основали проект WiTricity. Они сосредоточили свои силы на разработке системы БПЭ среднего диапазона, за основу взята магнитно-резонансная связь. В результате в 2017 году появились универсальные беспроводные зарядные устройства для электрокаров DRIVE 11. Приемник устанавливается на днище авто, а передатчики – где угодно (в общественных местах, на станциях заправки или в гаражах владельцев электрокаров).

Автомобильный концерн BMW также запустил продажи беспроводной индуктивной зарядки. Комплект состоит из индукционной зарядной станции – GroundPad, которая подходит для помещений и установки на открытом воздухе, второй элемент — CarPad (система зарядки автомобиля). После того, как авто оказывается над зарядкой, GroundPad генерирует магнитное поле, а CarPad индуцирует электрический ток, который затем передается в аккумулятор. За 3,5 часа батарея будет полностью заряжена. Аналогичную систему концерн разрабатывает и для мотоциклов.

В Швеции в 2018 году появилась целая электрифицированная дорога eRoadArlanda. Это 2-км участок дороги вблизи Стокгольма, с установленными отбойниками-троллеями. Пока электрокар находится над этой линией, подвижные токосъемники заряжают батареи.

Использовать ее могут электрогрузовики, разработанные в рамках проекта eRoadArlanda, в будущем технологию будут совершенствовать, чтобы сделать универсальной.

А вот в норвежском Осло разрабатывают систему бесконтактной подзарядки именно для легковых электромобилей в такси. В рамках государственной программы «ElectriCity» будет реализована зарядная система, которая позволит заряжать аккумуляторы, не теряя рабочего времени: например, пока водитель ожидает новый заказ или ждет клиентов.

Инженеры стартапа Emrod пошли дальше: беспроводная система передачи электроэнергии на большие расстояния уже тестируется в Новой Зеландии. Хотя инженеры Emrod не раскрывают точных деталей своей разработки известно, что технология подразумевает использование микроволнового излучения. Устройству, работающему в широком спектре частот, не обязательно находиться вблизи непосредственных потребителей. Это позволяет электрифицировать удаленные населенные пункты, при этом не производить вырубку деревьев для прокладки линии электропередач. Кроме того, технология должна снизить цену на электроэнергию.

Что касается безопасности, то по заверению создателей, излучение неионизирующее (не наносит вред человеку, животным, растительности). Также для дополнительной защиты установки укомплектованы сигнальным, лазерным лучом малой мощности, который сканирует линию передачи на наличие помех, и в случае их выявления, автоматически останавливает работу устройства. Примерно через полгода можно будет сделать выводы о его эффективности и создании полноценной системы. Примечательно, что поддержку стартапу Emrod оказывает один из главных дистрибьюторов электроэнергии в Новой Зеландии – Powerco. Это говорит о том, что крупные игроки энерго-рынка понимают важность поиска альтернатив в «зеленом» сегменте.

В XIX веке, в котором зарождались и беспроводная энергия и беспроводная связь, приоритет был отдан второму открытию. Возможно, теперь, когда связь уже налажена, ученые уделят внимание беспроводным технологиям передачи энергии, сделав их доступнее и дешевле. Это, в свою очередь, ускорило бы переход от двигателей внутреннего сгорания к электрокарам, решив часть проблем экологии.

Беспроводная передача электроэнергии

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Читайте также  Противопожарная лестница металлическая наружная

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека. Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча. В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.

Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.

В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.

С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

masterok

Мастерок.жж.рф

Хочу все знать

Прочитал сообщение о том, что в Новой Зеландии испытывают первую в мире дальнюю беспроводную передачу энергии и почувствовал, что где-то тут нам вешают лапшу на уши. Все это выглядит если не антинаучно, то по крайне мере абсолютно не имеет прикладного коммерческого интереса. Вот смотрите сами.

Новозеландский стартап разработал метод безопасной и беспроводной передачи электроэнергии на большие расстояния без использования медного провода и работает над его внедрением со вторым по величине в стране дистрибьютором электроэнергии.

Мечта о беспроводной передаче энергии далеко не нова. Гений Никола Тесла однажды доказал, что в уже 1890-х годах мог приводить в действие лампочки с расстояния более двух километров с помощью катушки Тесла — не говоря уже о том, что при этом он сжег динамо на местной силовой установке и погрузил весь город Колорадо-Спрингс в затемнение.

Мечта Теслы заключалась в том, чтобы разместить огромные башни по всему миру, которые могли бы передавать энергию по беспроводной связи в любую точку земного шара, питая дома, предприятия, отрасли промышленности и даже гигантские электрические корабли в океане. Инвестор Дж. П. Морган, как известно, убил эту идею одним вопросом: «где я могу поставить счетчик?».

На это ушло 120 лет, но новозеландская компания Emrod наконец-то убедила крупного дистрибьютора в возможности использовать беспроводную энергию в коммерческих целях. Powerco, второй по величине дистрибьютор в Новой Зеландии, инвестирует в Emrod, чья технология способна намного эффективнее перемещать большие объемы электроэнергии между любыми двумя точками, которые можно соединить с помощью реле прямой видимости.

«Нам интересно посмотреть, сможет ли технология Emrod дополнить устоявшиеся способы подачи электроэнергии, — сказал менеджер по трансформации сети Powerco Николас Вессио. «Мы предполагаем использовать её для доставки электроэнергии в отдаленные места или через районы с труднопроходимой местностью.».

У Emrod в настоящее время есть рабочий прототип устройства, но компания создаст еще один для Powerco с планами поставки к октябрю, затем проведет несколько месяцев в лабораторных испытаниях, прежде чем перейти к полевым испытаниям. Прототип устройства будет способен выдавать «всего несколько киловатт» мощности, но его можно легко увеличить. «Мы можем использовать точно такую ​​же технологию, чтобы передавать в 100 раз больше энергии на гораздо большие расстояния», — сказал основатель Emrod и серийный предприниматель Грег Кушнир. «Беспроводные системы, использующие технологию Emrod, могут передавать любое количество энергии».

Система использует передающую антенну, серию реле и приемную ректенну (выпрямительная антенна, способная преобразовывать микроволновую энергию в электричество). Каждый из этих компонентов выглядит просто как большие квадраты на полюсах. Её лучи используют неионизирующий промышленный, научный и медицинский диапазон радиоспектра, включая частоты, обычно используемые в Wi-Fi и Bluetooth.

В отличие от всемирной мечты о бесплатном электричестве Теслы, мощность здесь излучается непосредственно между определенными точками, без излучения вокруг луча, а «низкочастотная безопасная лазерная завеса» немедленно отключает передачу энергии до того, как какой-либо объект, такой как птица, дрон, или вертолет, может попасть в поле передачи. В этот раз не будет трудностей при определении места размещения счетчика.

Эмрод говорит, что передатчик работает в любых атмосферных условиях, включая дождь, туман и пыль, а расстояние передачи ограничено только линией прямой видимости между каждым реле, что дает ему возможность передавать электричество на тысячи километров без лишних расходов на инфраструктуру, расходы на техническое обслуживание и воздействие на окружающую среду.

Компания рассматривает беспроводную передачу, как ключевую технологию для возобновляемой энергии, которая часто генерируется далеко не там, где она необходима. Такая система может быть великолепной для доставки продуктов оффшорной и дистанционной генерации возобновляемой энергии в городские сети без необходимости использования гигантских аккумуляторных батарей, подстанций и тому подобного.

Это также будет полезно при некоторых незапланированных отключениях. Любой грузовик может быть снабжен ректенной платформой, а затем перемещен к зоне видимости реле для создания временного беспроводного подключения к сети.

Что скажете о перспективах такой технологии?

Беспроводной способ передачи электроэнергии. Новейший кейс применения разработки компании Emrod

Пока страны думают, как снизить объемы выбросов CO2 в атмосферу, увеличивая долю ВИЭ и атомной энергии, а десятки компаний ищут идеальный накопитель электроэнергии, новозеландский стартап Emrod презентовал способ беспроводной передачи электроэнергии.

Предприниматель Грег Кушнир задумался о дешевом и надежном способе электроснабжения в обход тяжеловесной инфраструктуры электрических сетей. В ходе исследований изучил работу НАСА и Японского космического агентства, которые планировали собирать солнечную энергию с помощью спутников и транслировать на Землю. Кушнир понял, что способ бесконтактной передачи электроэнергии на расстояния существует. Единичные исследования в этой области натыкались на проблему потерь большей части энергии и прекращались.

Ученый Рэй Симпкин из Callaghan Innovation по заказу Кушнира и при финансовой поддержке государства разработал прототип устройства беспроводной передачи электроэнергии.

Устройство представляет собой выполненные из метаматериалов передающую, принимающую антенны и реле между ними. Электрическая энергия в установке, проходя через передающую антенну, преобразуется в электромагнитные волны, направляется в ретранслирующие экраны, попадает в ректенну и трансформируется обратно в электроэнергию. Дальность действия устройства ограничивается видимостью.

Читайте также  Электронасос из старогохолодильника

Потеря энергии при передаче на прототипе составляет 30%. Причем эффективность принимающей антенны из радиопоглощающих метаматериалов стремится к 100%.

Прототип разработки с октября тестируется компанией Powerco — вторым по величине поставщиком электроэнергии в Новой Зеландии. Аппарат передает ток мощностью всего 2 кВт, но создатели уверяют, что мощность, как и дальность, легко нарастить.

Для передачи энергии Emrod задействует неионизирующий промышленный, научный и медицинский диапазон частот (ISM). Существуют международные правила безопасности по использованию такой частоты и долгая история применения среди людей без ущерба здоровью.

Представители Emrod утверждают, что установка не угрожает птицам и дронам, оказавшимся на пути электромагнитных волн. Сети лазерных лучей окружают электрический путь, и, если в их периметр попадает объект, передача энергии прерывается, что не сказывается на бесперебойности электроснабжения. Снег, дождь, град, взвеси пыли не приводят к отключению устройства.

Разработчики не планируют вытеснять привычные электрические сети, а предлагают использовать устройство в труднодоступных районах или для быстрого возобновления электроснабжения на аварийных участках сети с помощью машин с антеннами.

Кроме того, установка таких аппаратов позволит передавать энергию станций ВИЭ в регионы с неподходящим для выработки «зеленой энергии» климатом.

15 октября компания написала на официальном сайте о возможном кейсе применения своей разработки для электроснабжении острова Стьюарт. Он расположен в 30 км от Южного острова в Новой Зеландии. 85% территории, а это 1300 квадратных километров, занимает Национальный парк Ракиура. Стьюарт почти полностью покрыт лесом, на острове живут 5 видов пингвинов, коричневая птица киви, редкий вид попугая Нестор-кака.

У национального парка с сохраненной экосистемой есть скелет в шкафу, не гармонирующий с имиджем парка. Потребности в электроэнергии острова покрываются дизельной генерацией и использованием сжиженного нефтяного газа, а годовые выбросы СО2 составляют 820 тонн. Кроме того, стоимость электроэнергии за кВт-ч на полдоллара дороже, чем на территории Новой Зеландии, питающейся от национальных электрических сетей. Люди экономят слишком дорогую энергию, поэтому потребление на человека на острове Стьюарт составляет меньше половины среднего потребления по стране.

Решением проблемы дорогостоящего и неэкологичного энергоснабжения могла бы стать прокладка подводного кабеля или использование энергии солнца и ветра на острове. Однако первый вариант требует огромных затрат, а ВИЭ не покроют потребностей в электроэнергии из-за недостаточной выработки в силу климата. Более того, установки для ВИЭ могут негативно влиять на экосистему. Солнечные панели закроют собой огромную площадь национального парка, а ветряная электростанция создаст вибрацию, к которой чувствительны птицы.

Emrod предлагает передавать энергию бесконтактно от ВИЭ с Южного острова. Компания подсчитала, что беспроводная передача электроэнергии за счет экономии на инфраструктуре снизит тариф для жителей Стьюарта с 0.6$ за кВт-ч до 0,46$ за кВт-ч. Это самый бюджетный вариант за аналогичную мощность.

Если разработка Emrod докажет жизнеспособность, то станет яркой иллюстрацией прорывных технологий, когда вдруг появляется стартап и кардинально меняет отрасль, устанавливая новые недорогие способы передачи электроэнергии.

Беспроводная передача электричества по теории Тесла

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Электрический трансформатор

Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий