Защита металлических конструкций от пожара

Защита металлических конструкций от пожара

Огнезащита металлоконструкций — способы и составы для нанесения защитных покрытий

Современные строительные технологии сегодня позволяют обеспечить строительство зданий и сооружений с максимальным задействованием металлических несущих конструкций. Легкость и надежность металла нашла свое применение практически во всех видах современных построек от индивидуальных домов до многоэтажных офисных и торгово-развлекательных центров. Однако проблема пожарной безопасности этих построек в большинстве случаев зависит не от эффективности сигнализации или расположения средств пожаротушения, а от такого фактора, как огнезащита металлоконструкций.

Нормативное регулирование использования противопожарной защиты металлических конструкций зданий и сооружений

Использование при возведении зданий металлических стальных балок, колонн, лестниц и площадок значительно облегчило процесс строительства и одновременно снизило стоимость здания. Повсеместное применение несущих колон и балок перекрытия из металлопроката, с одной стороны, дает возможность обеспечить прочность постройки, а с другой — не дает гарантии безопасности, ведь пожар, быстро проводит нагрев металлоконструкции до 500 градусов, а дальше наступает ее деформация под собственным весом. При возникновении пожара такая температура может быть достигнута буквально за 5-7 минут.

Не допустить развитие такой ситуации поможет нанесение огнезащиты на металлоконструкции. На законодательном уровне это решение регламентировано государственными стандартами и СНиП. Федеральные законы РФ № 384-ФЗ и № 184-ФЗ требуют выполнения технического регламента в вопросе обеспечения пожарной безопасности и в разрезе технического регулирования и категорирования пожарной безопасности основных металлоконструкций зданий и сооружений.

Вопросы огнезащиты металлоконструкций нормативные документы конкретизируют в строительных нормах и правилах, например, СНиП 21-01-97 — документ раскрывает нормы и правила, в том числе и способы огнезащиты металлических конструкций зданий.

Важно знать: Профессиональное нанесение огнезащиты на разного рода материалы и конструкции зданий начиная от деревянных кровель и заканчивая металлическими колоннами и балками, проводят предприятия и организации, имеющие соответствующую лицензию. Такие работы проводятся на основании проекта комплексной противопожарной защиты здания.

На какие конструкции здания наносятся защитные материалы

Для минимизации последствий пожара и обеспечения долговременной способности сохранять форму и нести нагрузки конструктивная огнезащита металлических конструкций наносится:

  • На несущие конструкции здания — колонны, подпорки, балки;
  • Кровельные системы постройки — стропильная часть, балки усиления, стяжные элементы систем, обрабатывается металлоконструкция кровли;
  • Каркасные детали сооружения — надстройки, мансардные помещения, чердачные помещения, межэтажные перекрытия;
  • Детали стеновых колон и балок межэтажных перекрытий все остальные элементы конструктивно составляющие несущие элементы и системы обеспечения безопасности.

Отдельно принимаются меры по усилению конструктивной огнезащиты узлов соединения несущих элементов каркаса постройки.

Нанесение защитного слоя штукатурки

Конструктивная огнезащита металлических конструкций в равной степени касается как производственных, так и офисных и жилых помещений. Высокие санитарные требования и нормативы пожарной безопасности требуют обеспечения защиты и таких систем, как вентиляция и внутренние трубопроводы здания, а значит и эти металлоконструкции нужно наносить противопожарную окраску.

Условия нанесение защиты на основные элементы здания, требуют, чтобы соблюдался нормативный показатель предельных норм стойкости этих элементов в соответствии с мировой классификацией:

  • Для стен, основных несущих элементов сооружения, колонн — R120;
  • Для перекрытий межэтажных, чердачных, подвальных помещений —R160- R45;
  • Настил с утеплителями —R 30;
  • Для ферм, балок и прогонов кровели — R 30;
  • Для лестничных клеток — R120-R90;
  • Для лестничных маршей и площадок внутренних лестниц — R60-R45;

Где R — означает обозначение потерю конструкцией своей несущей способности, а цифры время начиная с момента воздействия огня на металл и до достижения критической отметки температуры, при котором начинается неотвратимая деформация.

При этом самый малый коэффициент имеет постройки ІV степени огнестойкости — R15.

Виды защитных конструкций и технологий установки

Нанесение огнезащиты на металл сегодня рассматривается как комплексный, системный подход для достижения необходимого запаса прочности. На сегодняшний день наиболее эффективными видами такого подхода выступают:

  • Нанесение на поверхность металлических изделий и конструкций специальных термозащитных покрытий и облицовок;
  • Конструктивная защита металлических конструкций в виде создания дополнительных защитных экранов, подвесных потолочных систем;
  • Установка специальных систем, позволяющих, заполнить внутренний объем металлических элементов составом, который может выполнять роль и теплоносителя, и средства пожаротушения.

Огнезащита конструкций с применением специальных термостабильных рецептур и покрытий предусматривает нанесение многослойного полимерного покрытия из термостойкого состава. Многослойная окраска предусматривает как обеспечение нужный уровень пожаробезопасности, так и защиты металла от коррозии.

Огнезащитное покрытие металлоконструкций, реализуемое установкой дополнительных щитов термозащиты из базальтового волокна или минеральной ваты с последующим закрытием этого стоя декоративными элементами облицовки.

Заполнения теплоносителем полых элементов выполняется по специальному проекту, превращая таким образом, колонны и опоры в противопожарный резервуар. И, хотя эта технология имеет очень высокую эффективность из-за дороговизны на сегодняшний день используется редко.

Нанесение огнезащиты термозащитными составами

Обработка больших поверхностей осуществляется методом нанесения лакокрасочных составов на основе полимерных соединений на металл. Принцип действия большинства таких термозащитных составов основан на реакции отдельных ингредиентов покрытия на изменение температуры. При значительном повышении температуры или, когда огонь переходит на металл краска начинает вспучиваться — увеличиваясь в объеме. К примеру, при толщине огнезащитного слоя в 1 мм при коэффициенте увеличения 50 — слой увеличивается в объеме, в результате чего получается защитное покрытие толщиной 50 мм. Удобство нанесения такого состава заключается в возможности обработки большого объема при помощи краскопульта и получения равномерного слоя покрытия даже в самых труднодоступных местах. Краска обладает всеми качествами обычной краски для внутренних работ, но при этом срок службы такого покрытия внутри помещения достигает 10 лет.

Установка термозащитных экранов

Для воздуховодов, систем кондиционирования и вентиляции в качестве утеплителя часто используется базальтовая вата с фольгированной поверхностью. Свойства каменной ваты как утеплителя при этом дополняются защитным экраном из фольги при этом теплопотери внутри воздуховодов получаются минимальными. Подобный принцип заложен и при установке экранов из стекловаты и базальтового полотна и на металлический каркас здания. Для защиты от повышенной температуры применяются несколько видом защитного материала и специальных технологий его монтажа.

Самый простой метод — это оклейка тонкими пластинами или рулонным фольгированным покрытием всей поверхности. На металл наносится мастика и уже на нее клеится фольгированный минеральный материал. Высокая степень защиты металла от температуры достигается использованием более плотного полотна и отражающими свойствами фольги. Чтобы повысить пожаробезопасность можно дополнительно использовать стальной лист для устройства наружного защитного кожуха.

Более сложный метод, это устройство защитного короба вокруг несущих балок или сварных рамных балок и колонн из толстого утеплителя. Наружная часть такой сендвич панели утепляется при помощи тонких листов металла или штукатурным составом, поверху проводится окрашивание жаростойкими лакокрасочными составами. Для нанесения рекомендуются составы серии мetal жаростойкие и пожаробезопасные краски и лаки от производителя nobel. Также рекомендуется использовать продукцию торговой марки akzo – жаростойкие и термозащитные краски.

Внимание! Жаростойкие лакокрасочные составы позволяют сохранять качество слоя краски при высокой температуре, при этом нужно помнить, что это все-таки горючий материал. Противопожарная краска под воздействием температуры или огня увеличивается в объеме, создавая таким образом преграду для температурного воздействия на металл.

Нанесение огнезащитной штукатурки

Защита опорных колон, стеновых и внутренних колон поддерживающих балки межэтажного перекрытия может быть выполнена в виде штукатурки.

Термозащитные свойства штукатурного состава, нанесенного на опору толщиной 30 мм, обеспечивают защиту металла от нагрева в течение 30-45 минут. Нагрев металла в это время происходит до температуры 100-120 градусов. В течение следующих 30 минут температура поднимается до 300 градусов. Для работ используются составы файрекс, кнауф, феникс. Кроме металла штукатурки используются для защиты дерева и бетона.

Установка теплоизоляции из минеральной ваты

При устройстве многослойного вида теплоизоляции из минеральной ваты плотностью 165 кг м3 толщиной 90 мм и верхнего декоративного слоя штукатурки динамика нагрева металла будет следующей:

  • 0-1 час — температура металла достигает показателя 100 градусов;
  • 1-1,5 час — повышение температуры до 300 градусов;
  • 1,5-2 часа — температура повышается до 400 градусов;

После оштукатуривания проводится покраска жаростойкой краской. Самыми популярными продуктами такого вида продуктов является продукция rockwool – базальтовые фольгированные рулоны, stoebich – системы превентивной защиты, противопожарные шторы, технониколь — рулонные защитные материалы и мастики для монтажа.

Установка гипсокартонных плит

Среди наиболее эффективных методов защиты, несущих колон и балок, выступает установка гипсокартонных плит. Гипс сам по себе является отличным теплоизоляционным и защитным материалом, и если установить несколько плит для создания защитного щита толщиной общей толщиной 50 мм динамика роста температуры металла будет выглядеть следующим образом:

  • В первые 30 минут с момента начала возгорания температура плавно достигнет показателя в 100 градусов;
  • На протяжении последующих 1,5 часов температура существенно не изменится и будет колебаться в районе 100-130 градусов;
  • Примерно через еще 30 минут она достигнет 200, а спустя еще 10-15 минут и 300 градусов.

Как видно гипсокартон — это лучший защитный тип материала по сравнению с другими видами огнестойких материалов. Такой конструктивный метод установки пожаробезопасного покрытия может быть применен и для защиты бетона и деревянных элементов здания. Среди производителей самым популярным на рынке является кнауф, производящая гипсокартонные листы, шпаклевочные смеси и штукатурные составы.

Технологии и материалы для огнезащиты

В практической плоскости проведение работ по огнезащите металлоконструкций нормативными документами регламентируется как обязательный элемент проекта сооружения. Для него обязательно разрабатывается полный пакет технической документации — чертеж, проводится расчет, реферат для согласования, смета с указанием расценок и всего перечня работ согласно гост.

Как правило, первичная противопожарная обработка проводиться на этапе строительства. Однако в процессе эксплуатации пожарная инспекция может внести исполнительный лист с требованием привести в соответствие нормам безопасности теплозащиту как отдельных помещений, так и всего объекта. В таком случае работы могут проводится и самостоятельно, узловым моментом здесь будет выступать правильность и очередность выполнения операций технологии.

Подобрать наиболее приемлемый вид материала и способ его установки поможет видео процесса работ с разными материалами:

Нанесение защитных покрытий альпром

Нанесение покрытий на несущие элементы краской Оберег

Технология огнезащитной обработки несущих металлоконструкций

Правильно провести расчет необходимого материала поможет онлайн -калькулятор, а более детально определить каждый раздел сметы и товарный пункт поможет использование инженерных программ, размещенных на форуме dwg.

Огнезащита металлических конструкций: способы и составы

Несущая способность металлоконструкций при отметке температуры +500 градусов Цельсия утрачиваются. Указанная температура воздействует на металлические изделия во время пожара. Для обеспечения огнезащиты стальных изделий следует обратиться к СНиП. Обеспечение пожаробезопасности зданий и строений регулируется СНиП 21-01-97* (СП 112.13330.2011). В своде правил приведен список материалов, которые могут быть выбраны для огнезащиты металлических изделий.

Степень огнестойкости регулируется ГОСТ 30247.0-94. Классификация пожароопасности регламентируется ГОСТ 30403-2012.

  • Не пожароопасный класс опасности (К0);
  • Низкий класс пожароопасности (К1);
  • Средний класс пожароопасности (К2);
  • Высокий класс опасности возникновения пожара (К3).

При возникновении/развитии пожара в зданиях различного назначения, а также любой степени огнестойкости: от жилого дома, надворных построек из древесины до производственного цеха из железобетонных конструкций огнем повреждаются/уничтожаются не только горючие элементы строений/сооружений, оборудование, сырье/товарная продукция, находящиеся в них, отделка и мебель, предметы обихода.

  • балки,
  • фермы,
  • колонны,
  • опорные столбы,
  • внутренние лестницы.

Эти строительные конструкции, выполненные чаще всего из чугунного, стального металлопроката, начинают активно деформироваться в огне через 15 минут, что отражено в государственных строительных нормах, регламентах пожарной безопасности. Через еще небольшой промежуток времени в зависимости от толщины, общей массы металла, силы пламени; здания, с несущими конструкциями из незащищенного ничем металла, начинают рушиться, складываться как карточный домик, унося жизни многих людей и принося огромный материальный ущерб.

Читайте также  3 лучшие фирмы посудомоечных машин

  • Огнезащита несущих металлических конструкций – это самый эффективный способ довести все элементы здания/сооружения, отвечающие за целостность, устойчивость и надежность; что во многом определяется требуемой степенью, а также пределами огнестойкости для каждой детали в нем, указанными в СНиП 21-01-97* (СП 112.13330.2011). Но, этот путь решает проблему защиты от открытого пламени, теплового воздействия огня пожара внутри здания, чему также способствует обеспечение его современными стационарными системами пожаротушения, которые не только ликвидируют возгорание на начальной стадии; но и охлаждают несущие конструкции здания, в том числе выполненные из металла, понижают/сбивают высокую температуру во всем объеме строения/пожарном отсеке.
  • Соблюдение противопожарных разрывов исключит занесение источника открытого огня внутри здания, а содержание в надлежащем состоянии пожарных проездов/подъездов к зданиям/сооружения будет способствовать оперативному прибытию подразделений МЧС, негосударственных формирований для ликвидации ЧП.

Способы огнезащиты

Многочисленные решения по защите от прямого воздействия огня, огромного теплового воздействия развивающегося пожара металлических и деревянных конструкций, применяемых в строительном деле, найдены очень давно; но продолжают изобретаться как новые способы, так и новые составы.

Реальная картина находит отражение во многих нормах/правилах, регламентирующих обеспечение огнестойкости защищаемых объектов. Отдельно стоит упомянуть СП 2.13130.2012. Огнезащита металлических конструкций, как, впрочем, и всех остальных элементов зданий/сооружений, проходит в нем красной строкой.

Давно применяются, а также появились относительно недавно следующие способы/виды, методы и приемы предохранения поверхностей металла, находящихся под значительной нагрузкой в составе строения, от огня/теплового воздействия, называемые все вместе конструктивной огнезащитой.

Основана она на нанесении/создании на поверхности строительных конструкций, которые могут подвергаться внешнему воздействию, теплоизоляционного слоя, достаточной толщины и качества покрытия; чтобы он выдержал огонь/тепло в течение нормативного времени согласно требованьям ПБ при проектировании/строительстве в части обеспечения огнестойкости:

  • Огнезащита металлических колонн, опорных столбов, поддерживающих перекрытия/покрытия зданий/сооружений, используется очень давно, начиная со возведения старинных особняков/замков. Для этого использовался природный камень, кирпич, плитные материалы – сначала естественного, а позднее – искусственного происхождения.

Такая облицовка от пола до перекрытия надежно предохраняет конструкцию из металла от возможного воздействия факторов пожара. Если раньше такие материалы выкладывались вокруг колонны/столба с использованием строительного/известкового раствора, то сегодня разработаны виды/методы крепления плитных/листовых, а также рулонных огнезащитных материалов на каркасе с воздушными прослойками; что снижает нагрузку на междуэтажные перекрытия, значительно удешевляет этот вид противопожарных работ.

  • Огнезащита металлических балок. По понятным причинам облицевать камнем/кирпичом или плитными материалами такие конструкции, находящиеся под потолком помещений зданий, сложно/невозможно или просто опасно для людей, которые будут в нем находиться, особенно если это происходит на территориях с повышенной сейсмической активностью.

Поэтому металлические балки, как и колонны/столбы зданий, защищают слоем мокрой штукатурки, цементного раствора, бетонированием по деревянной дранке/металлической сетке, различными огнезащитными вязкими смесями – обмазками/мастиками, придавая в зависимости от толщины защитного покрытия требуемый предел огнестойкости. Недостаток такого метода огнезащиты – дополнительная нагрузка на перекрытия здания, дополнительные затраты, внешняя тяжеловесность таких решений, что часто не устраивает архитекторов/заказчиков проектируемых или строящихся зданий.

  • Огнезащита металлических лестниц. Так как это обязательная конструкция практически любого здания/сооружения, важный элемент организации/системы эвакуации людей из строений, то такому виду огнезащиты уделяется особое внимание. Использование быстровозводимых, сравнительно недорогих лестниц из металла, которым несложно придать нужный уклон, высоту/ширину маршей, широко распространено при проектировании/строительстве зданий большинства степеней огнестойкости, категории производства.

Защищают их всеми возможными вышеперечисленными способами, а также с использованием тонкослойных напыляемых составов – покрытий и красок, о которых речь пойдет в следующей главе.

  • Для защиты несущих конструкций зданий и лестниц в них используется также комбинированный способ, являющийся сочетанием различных видов огнезащитной обработки металла.

Следует отметить, что во всех случаях – при любых способах нанесения/крепления огнезащитных материалов они обязаны отвечать технологическим методам/приемам, приведенным в протоколах испытаний на стойкость к огневому воздействию, что требует СП 2.13130.2012 (см. выше).

В роли конструктивных средств огнезащиты металлических конструкций рассматривается базальтовое волокно. Современные методы огнезащиты подразумевают укладку определенных материалов, которые способны создать препятствие для распространения огня.

Металлические конструкции для обеспечения огнезащиты могут покрываться специальными составами, которые образуют теплоизолирующий слой. Для защиты стальных изделий могут применяться огнеупорные материалы, выкладываемые в несколько слоев.

Составы для огнезащиты

Покрытие огнезащитным составом металлических конструкций

Нормативные требования к таким многокомпонентным смесям, а также методикам определения эффективности устанавливает ГОСТ Р 53295-2009.

Эффективным решением стала относительно недавняя разработка – огнезащитные краски/покрытия. Это высокотехнологичные составы, состоящие из множества компонентов. Разработаны много торговых марок, принадлежащих в основном известным во всем мире производителям и соответственно разработчикам красок.

Такие огнезащитные жидкие материалы наносятся распылением, кистью в несколько слоев, обычно не более трех. После каждого нанесения в соответствие технических условий/сертификата соответствия ПБ необходим определенный промежуток времени для высыхания. Под воздействием огня огнезащитная краска вспучивается, образуя вспененный слой, напоминающий пемзу, который не пропускает тепло к защищаемой конструкции. Этим обеспечивается любой требуемый нормами предел огнестойкости.

Кроме практической функции огнезащиты, такие краски позволили воплощать в жизнь многие ранее нереализуемые идеи архитекторов и дизайнеров по строительству зданий с применением ажурных несущих конструкций из металла.

Так, эффективная огнезащита металлических ферм, особенно больших габаритов, монтируемых на значительной высоте, стала возможной на практике; а не только в проектных решениях, только после появления таких огнезащитных материалов, практически не увеличивающих нагрузку на эти ответственные во всех отношениях элементы сооружений; таких как стадионы, различные развлекательные, торговые, выставочные, спортивные комплексы, многопролетные здания производственных цехов, складских ангаров.

Эти составы можно покрывать сверху дисперсионными красками на водной основе, придавая нужный цвет конструкциям; а также стойкими к внешним воздействиям лаками, значительно продлевающими такому виду огнезащиты срок эксплуатации до ремонта/обновления.

Виды огнезащитных составов и материалов

Виды огнезащитных составов

Следует учитывать, что современные огнезащитные составы по металлу вещь, мягко говоря, недешевая. Особенно когда площади поверхностей несущих конструкций начинают измеряться тысячами метров. А если вспомнить про стоимость работ, значительная часть которых относится к высотным?

Поэтому до сих пор в ходу традиционные мастики/обмазки, даже мокрая штукатурка. Из более современных материалов, конкурентов тонкослойных покрытий/красок; если речь не идет об огнезащите сложных по форме, профилю/сечению конструкций, стоит упомянуть следующие материалы:

  • Базальтовый рулонный, выполненный на основе холста из базальтового волокна без связующих компонентов. Может быть прошит стекловолоконной/базальтовой нитью, иметь покрытие/подкладку.
  • Плита из минеральной ваты, покрытая стеклотканью/фольгой с одной/двух сторон.

Такие плитные/рулонные материалы в ходе огнезащитных работ оборачиваются или наклеиваются вокруг колонн, столбов, балок, обеспечивая требуемый предел стойкости к огню.

Для тех, кто желает и имеет средства идти в ногу со временем, российскими и зарубежными компаниями, химическими концернами выпускается огромный спектр тонкослойных огнезащитных покрытий по металлу, которые называют также термическими красками, конструктивными обмазками и прочими «отличными от других» названиями.

В массовом строительстве при использовании несущих металлоконструкций каркаса зданий/сооружений используются различные марки огнезащитных составов, количество которых исчисляется десятками. Чтобы только вкратце перечислить их и производителей понадобится новая статья на эту тему.

Не следует забывать, что право на проведение огнезащитных работ по металлу имеют только компании, обладающие соответствующей лицензией МЧС; а сами работы не так просты, как это может показаться на первый взгляд. Так, неправильно подобранные к установленным на строительном объекте грунтовка, краска и лак могут привести к тому; что вместо того, чтобы прослужить долгие годы свеженанесенное тонкослойное покрытие начнет шелушиться и осыплется. Вряд ли кому-то нужны такие натурные эксперименты за собственный счет.

Дополнительная информация

Способы огнезащиты металлических конструкций

Главная / Блог / Способы огнезащиты металлических конструкций

Способы огнезащиты металлических конструкций

Железобетонные и металлические конструкции являются основой несущих конструкций зданий, которые должны защищаться от воздействия огня при пожарах. В строительном законодательстве установлены требования по времени огнестойкости конструкций, в течение которого они должны сохранять свои несущие способности, а также способы защиты металлических конструкций. Сохранение несущей способности конструкций при пожаре важно в первую очередь для безопасного вывода людей из здания.

Зачем нужна защита металлоконструкций от огня?

Может возникнуть вопрос — зачем вообще нужна защита металлоконструкций от огня, если металл не горит? Аналогичный вопрос можно задать про железобетоные конструкции.

Проблема заключается в том, что при нагреве до 500 o С металлические конструкции теряют прочность и несущую способность под воздействием своих нагрузок. Те же процессы происходят в железобетонных конструкциях, прочность которых в нормальных условиях обеспечивается в значительной степени каркасом из стальной арматуры.

Предел огнестойкости металла без огнезащиты составляет от R10 до R15. Это значит, что металлоконструкции без огнезащиты будут выполнять свои функции в случае пожара в течение 10-15 минут. Это время не удовлетворяет нормативам для объектов, предполагающих нахождение людей.

Рассмотрим подробнее требования к огнезащите металлических конструкций, с учетом предела огнестойкости объектов.

Выбор вида огнезащиты. Предел огнестойкости зданий

Выбор способов огнезащиты определяется требованиями к пределу огнестойкости самих зданий, которые сформулированы в СП 2.13130.2020 «Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты».

В зданиях I и II степени огнестойкости для несущих конструкций, которые обеспечивают прочность и устойчивость здания, включая колонны и фермы, несущие стены, перекрытия и диафрагмы, огнестойкость этих элементов должна обеспечиваться применением конструктивных решений и материалов:
1. Конструктивная огнезащита (покрытие теплооизоляционными негорючими плитами или толстослойными составами).
2. Тонкослойные вспучивающиеся огнезащитные краски.

Особые условия предусмотрены для сейсмических зон – в таких зонах применяемые средства должны соответствовать требованиям СП 14.13330 по прочности при нагрузках, возникающих при землетрясениях. Также, средства огнезащиты нельзя использовать в таких местах, где отсутствует возможность контроля из состояния, ремонта или замены.

Огнезащитные краски (п. 2) могут применяться в зданиях I и II степени огнестойкости только для металлических конструкций с приведенной толщиной металла более 5,8 миллиметров. Рассмотрим подробнее этот показатель.

Расчет приведенной толщины металла

По НПБ 236-97 «Огнезащитные составы для стальных конструкций», приведенная толщина металла считается по формуле:

Описание:
— ПТМ — приведенная толщина металла (мм),
— S — площадь сечения (мм 2 ),
— P — нагреваемый периметр (мм).

Пример расчета: двутавровая балка 40Ш1 (ГОСТ 26020-83).
Рассматриваем вариант с обогревом со всех сторон.

Высота Ширина Толщина стенки Толщина полки
388 мм 300 мм 9,5 мм 14 мм

Площадь поперечного сечения: S = 12235 мм 2 .

Обогреваемый периметр: P = 1919 мм.

ПТМ = S / P = 12235 / 1919 = 6,38 мм.

Виды огнезащиты металлических конструкций

Итак, для огнезащиты металлических конструкций в зданиях могут использоваться конструктивная огнезащита либо вспучивающиеся тонкослойные краски.

Конструктивная огнезащита металлоконструкций – это огнезащитный теплоизоляционный слой из специальных материалов, предотвращающий нагрев металлических конструкций от огня.

Материалы конструктивной огнезащиты:

  • минераловатные плиты,
  • гипсокартонные листы,
  • асбестовые листы,
  • кирпич,
  • напыляемые толстослойные огнезащитные составы и штукатурки.

Как правило, материалы для огнезащиты металла делятся на три группы:

1. Конструктивная огнезащита —
облицовка минераловатными плитами, гипсокартоном, кирпичом
2. Конструктивная огнезащита — толстослойные составы и обмазки 3. Тонкослойные вспучивающиеся огнезащитные краски
До R150 От R90 до R150 От R30 до R120

Рассмотрим подробнее эти группы

  1. Конструктивная огнезащита, реализуемая облицовкой металлоконструкций огнестойкими теплоизоляционными материалами, например, плитами из минеральной ваты и гипсокартоном — традиционный способ защиты металлоконструкций от огня.
    Преимуществом этого способа является высокая огнезащитная способность. К недостаткам можно отнести высокую трудоемкость и стоимость работ.
    Применение конструктивной огнезащиты требует разработки проекта огнезащиты, в котором учитываются способы крепления огнезащитных конструкций, соответствующие технической документации на систему и протоколам испытаний огнезащиты.
  2. Конструктивная огнезащита из толстослойных огнезащитных обмазок и составов.
    Такие материалы не вспучиваются при нагревании. Они обеспечивают изоляцию от высокой температуры за счет сочетания низкой теплопроводности и достаточной толщины изоляционного слоя.
    Толстослойные напыляемые огнезащитные составы обладают преимуществами:
    • высокая огнезащитная эффективность,
    • технологичность и высокая скорость нанесения,
    • высокая прочность и долговечность облицовки,
    • меньший вес огнезащитных материалов, по сравнению с п. 1, создающий меньшие нагрузки на конструкции,
    • как правило, меньшая стоимость, по сравнению с п. 1.

    Огнезащитные обмазки и штукатурки широко применяются для огнезащиты воздуховодов, как вентиляционных, так и воздуховодов систем дымоудаления.

  3. Огнезащитные краски.
    Тонкослойные вспучивающиеся огнезащитные краски обеспечивают защиту металлических конструкций от огня за счет расширения от нагрева. При этом вокруг металла создается толстое покрытие из кокса, имеющего маленькую теплопроводность и высокую огнестойкость. Это обеспечивает необходимое время защиты металла от высоких температур.
    Огнезащитные краски дают существенные преимущества в случаях, когда проект допускает их применение:
    • огнезащитная эффективность до R120,
    • практически отсутствует дополнительная нагрузка на конструкции,
    • выгодная стоимость огнезащиты,
    • высокая скорость и технологичность нанесения,
    • возможность проведения работ в широком диапазоне температур, от +50 o С до -15 o С,
    • низкий расход материала,
    • долгий гарантированный срок службы,
    • эстетичный внешний вид, который может выступать в роли финишной отделки.

В строительном законодательстве присутствует множество требований к конструкциям зданий, с точки зрения пожарной безопасности. Имеется много различных показателей и нормативов, которые должны быть выполнены для успешной приемки построенного объекта.

Учесть все эти факторы, выбрать правильные и при этом наиболее технологичные и экономичные решения по огнезащите, которые будут обеспечивать безопасность находящихся в здании людей – задача проектной организации, разрабатывающей проект огнезащиты.

Строительные нормы огнезащитой обработки металлоконструкций

Опыт эксплуатации промышленных сооружений свидетельствует о том, что их несущая способность заметно снижается при нагреве до очень высоких температур (во время пожара, в частности).

Вот почему огнезащита металлических конструкций, порядок которой регламентируется специальными нормами (СНиП и ГОСТ), является обязательной составляющей мероприятий по профилактике их разрушения.

Четыре класса опасности

Согласно действующим нормативам, определяющим пределы огнестойкости при пожаре, все известные типы металлических конструкций по этому показателю делятся на четыре класса:

  • на не пожароопасные элементы (К0);
  • с низкой степенью пожарной опасности (К1);
  • умеренно опасные (К2);
  • пожароопасные (К3).

Указанное деление регламентируется ГОСТ 30403 и положениями техники пожарной безопасности, соблюдение которых обязательно при эксплуатации промышленных зданий и сооружений.

Отдельным пунктом этих стандартов прописывается перечень средств огнезащиты, специально предусмотренных для металлических конструкций.

Виды огнезащитных средств

Для предохранения поверхностей стальных сооружений от разрушения при сильном перегреве на них наносят особого рода теплоизоляторы, создающие своеобразный экран.

Защитное покрытие заметно повышает теплостойкость металлических конструкций, а также продлевает сроки их эксплуатации (в этом случае они нагреваются заметно медленнее и до окончания пожара не успевают окончательно разрушиться).

Согласно действующих СНИП от 21.01.97 года в строительстве возможны различные приёмы экранной огнезащиты металлоконструкций, каждый из которых применяется в соответствующих условиях.

Во-первых, это закрытие поверхностей специальными средствами огнезащиты, к числу которых следует отнести цементные составы, жидкое стекло, а также термостойкие волокна и подобные им материалы.

И, во-вторых, использование красителей особого состава, которые при сильном нагреве вспучиваются и образуют на поверхности металла пористый теплоизоляционный слой толщиной порядка нескольких сантиметров.

Одним из образцов такой продукции является базальтовое волокно, применяемое в качестве отдельного элемента защиты.

Конструктивная огнезащита металлоконструкций (СНИП 21.01.97 года) заключается в формировании термостойкого слоя, создающего дополнительную преграду на пути распространения огня.

Огнезащитная обработка особо важных узлов металлических конструкций может осуществляться комплексным методом, заключающимся в одновременном использовании нескольких защитных средств.

Примером таких действий может служить использование совместно с термостойким красителем специального огнеупорного гипсокартона, после закрытия которым поверхности приобретают вполне презентабельный вид.

Расчет эффективности защиты

Обустройству качественной огнезащиты металлических конструкций должна предшествовать такая обязательная процедура, как предварительный расчёт её элементов.

Последний является неотъемлемой частью подготовки проекта по защите строительных сооружений, который должен включать в свой состав следующие разделы:

  • изучение конструктивных особенностей защищаемого объекта;
  • подбор соответствующего этим особенностям метода огнезащиты, а также грамотное его обоснование;
  • подробнейшее описание технологических особенностей процесса огнезащиты металлических конструкций, согласно СНиП;
  • подготовка комплекта нормативных документов, чертежей и рабочих схем, составленных на основе предварительного изучения составляющих защищаемых объектов.

Контроль качества подготовленного проекта огнезащиты должен быть организован с учётом уже упоминавшихся ранее нормативных актов (СНиП).

Основное внимание при обсчёте огнезащиты конструкций уделяется такому параметру, как приведённая толщина металла в зоне предполагаемого контакта с огнём.

Она определяется из соотношения площади сечения в этом месте к периметру всей поражаемой поверхности (первый из этих параметров берётся из специального справочника по металлоизделиям).

Второй показатель высчитывается как суммарная длина всех сторон элементов металлической конструкции, расположенных открыто и потенциально доступных для огня. В соответствии с этими данными толщина металла, достаточная для его сохранности, определяется по следующей формуле:

  • F- показатель так называемой «приведённой» толщины,
  • S- площадь поперечного сечения конструкции,
  • P- суммарная длина периметра (в сантиметрах).

По результатам такого расчёта определяется противопожарный показатель огнестойкости как всей конструкции в целом, так и отдельных металлических элементов.

Данный показатель является основанием для выбора подходящего способа формирования огнезащиты металлической конструкции и определения достаточности толщины покрытия.

Проверка качества защиты

Оценка качества огнезащиты металлоконструкций на данном объекте осуществляется работниками сторонних организаций, специализирующихся на проведении этого рода обследований и имеющих соответствующую лицензию.

При проведении исследовательских работ должны выполняться требования действующих СНиП, касающиеся порядка их организации, а также применяться специальное измерительное оборудование и вспомогательный инструмент.

В особых случаях отдельные элементы (фрагменты) объёмных сооружений проверяются в лабораторных условиях, обеспечивающих более высокий уровень обследования.

Согласно требованиям пожарной безопасности проверка состояния огнезащиты на эксплуатируемых промышленных объектах должна проводиться не реже чем один раз в год.

При организации указанных мероприятий качество огнезащиты металлических конструкций или их фрагментов в первую очередь оценивается на соответствие требованиям нормативной документации.

При этом также учитываются рекомендации прилагаемых к исходным материалам сертификатов и инструкций, определяющих порядок формирования огнезащиты, а также толщину наносимого слоя.

Для оценки состояния огнезащиты (при измерении толщины термического слоя, в частности), как правило, используется специальный магнитный инструмент.

При составлении окончательного заключения, подготавливаемого по результатам проведённого обследования, в нём обязательно указываются основные характеристики и данные о местонахождении испытуемого объекта (металлической конструкции).

Группы по огнезащитной эффективности

В соответствии с требованиями действующих нормативов для всех объектов промышленного строительства устанавливается показатель эффективности огнезащиты, определяемый как время нагрева металла до критической температуры.

Согласно этому показателю все известные сооружения делятся на семь групп, каждая из которых определяется по результатам специальных обследований, проводимых по методу НПБ 236-97.

Согласно этой методике для классификационных испытаний металлический конструкций применяется специальная установка, предназначенная для определения показателя огнестойкости по ГОСТ 30247.0.

При реализации методики на поверхности конструкции устанавливаются термопары, обеспечивающие регистрацию распределения температур на различных участках металлической поверхности.

При проведении испытаний фиксируется временной промежуток, за который металл нагревается до критической температуры, характерной для условий пожарной ситуации (примерно 500 градусов).

С данными по этому показателю, определяемому в условиях нагревания металлических заготовок до критических температур, можно ознакомиться в таблице.

В случае применения специальных средств огнезащиты (огнеупорных красителей и им подобных) при их вспучивании образуется предохраняющий слой.

В ряде ситуаций толщина этого слоя бывает достаточной для того, чтобы увеличить показатель огнезащитной эффективности металлических конструкций до 240 минут.

Стоимость огнезащитных работ определяется такими типовыми показателями, как площадь защищаемого объекта и пределы огнестойкости составляющих его элементов.

Защита металлических конструкций от пожара

ОГНЕЗАЩИТА СТАЛЬНЫХ КОНСТРУКЦИЙ

Правила производства работ

Fire protection of steel structures. Execution of work

Дата введения 2019-07-25

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ — АО «НИЦ «Строительство» — ЦНИИСК им.В.А.Кучеренко

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

6 ВВЕДЕН ВПЕРВЫЕ

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минстрой России) в сети Интернет

Введение

Свод правил подготовлен авторским коллективом АО «НИЦ «Строительство» — ЦНИИСК им.В.А.Кучеренко (руководитель работы — д-р техн.наук, проф. А.И.Звездов, отв. исполнитель — д-р техн.наук, проф. И.И.Ведяков, исполнители — д-р техн.наук, проф. Ю.В.Кривцов, канд.техн.наук И.Р.Ладыгина; канд.хим.наук М.А.Комарова).

1 Область применения

Настоящий свод правил распространяется на работы по монтажу огнезащитных покрытий, устанавливаемых на несущие стальные конструкции жилых, общественных, промышленных или административных зданий и сооружений (далее — конструкции) и устанавливает общие требования к этим покрытиям.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 30247.0-94 (ИСО 834-75) Конструкции строительные. Методы испытаний на огнестойкость. Общие требования

ГОСТ 30247.1-94 Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции

ГОСТ 31149-2014 (ISO 2409:2013) Материалы лакокрасочные. Определение адгезии методом решетчатого надреза

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

ГОСТ 31993-2013 (ISO 2808:2007) Материалы лакокрасочные. Определение толщины покрытия

ГОСТ 32299-2013 Материалы лакокрасочные. Определение адгезии методом отрыва

ГОСТ 32702.2-2014 (ISO 16276-2:2007) Материалы лакокрасочные. Определение адгезии методом Х-образного надреза

ГОСТ Р 53293-2009 Пожарная опасность веществ и материалов. Материалы, вещества и средства огнезащиты. Идентификация методами термического анализа

ГОСТ Р 53295-2009 Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности

СП 2.13130.2012 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты (с изменением N 1)

СП 14.13330.2018 «СНиП II-7-81* Строительство в сейсмических районах»

Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте федерального органа в области стандартизации в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем своде правил применены термины по ГОСТ Р 53293, ГОСТ 31993, СП 2.13130, а также следующий термин с соответствующим определением:

3.1 огнезащитный состав; ОС: Материал, предназначенный для огнезащитной обработки конструкций (объектов).

4 Общие положения огнезащитных покрытий стальных конструкций

4.1 Огнезащитное покрытие монтируется на стальные конструкции таким образом, чтобы вся обогреваемая поверхность конструкции оказалась закрыта.

4.2 Для нанесения огнезащитного покрытия на стальные конструкции применяют два варианта:

— нанесение покрытия по периметру конструкции;

— устройство защитного кожуха вокруг конструкции.

Расчет периметра обогреваемой поверхности выполняется при проектировании огнезащиты. Площадь обогреваемой поверхности выбирается из соответствующего сортамента либо рассчитывается в зависимости от схемы огневого воздействия на конструкцию.

4.3 Способы огнезащиты выбирают с учетом требуемого предела огнестойкости стальной конструкции, ее типа и ориентации в пространстве (колонны, стойки, ригели, балки, связи), вида нагрузки, действующей на конструкцию (статическая, динамическая), температурно-влажностного режима эксплуатации и производства работ по огнезащите (сухие, мокрые процессы), степени агрессивности окружающей среды, увеличения нагрузки на конструкцию за счет огнезащиты, эстетических требований и др.

4.4 В условиях пожара стальные конструкции в основном теряют свою несущую способность через 15 мин с момента начала огневого воздействия, поэтому в случаях, когда требуемый предел огнестойкости превышает это значение, стальные колонны, фермы и балки подлежат огнезащите.

4.5 Контроль соблюдения требований нормативных документов по подготовке и нанесению (монтажу) средств огнезащиты на стальные конструкции должен включать:

— проверку наличия на предприятии производителя средства огнезащиты системы качества с контролем огнезащитной эффективности готовой продукции;

— проверку целостности упаковки и наличие на ней заводской этикетки с указанием наименования (марки) средства огнезащиты, наименования производителя (завода) и его почтового адреса;

— проверку пригодности технического оборудования для приготовления и нанесения (монтажа) средств огнезащиты;

— проверку адгезии, а также соответствия марки и толщины грунтовочного слоя, допустимого для нанесения (монтажа) средства огнезащиты;

— проверку наличия на рабочих местах инструкций или выписок из технологических карт по приготовлению и нанесению средств огнезащиты;

— контроль соблюдения технологии нанесения (монтажа) средств огнезащиты;

— мониторинг условий окружающей среды, допустимых для выполнения огнезащитных работ;

— контроль толщины сухого слоя средства огнезащиты с учетом грунтовочного слоя и финишного покрытия по окончании огнезащитных работ.

4.6 Для определения качества производимых и применяемых средств огнезащиты проводятся контрольные испытания отобранных проб огнезащитных составов на соответствие ГОСТ Р 53293. Испытания проводятся в испытательных лабораториях (центрах), допущенных к проведению данных испытаний в порядке, установленном действующим законодательством Российской Федерации.

4.7 В целях определения качества выполненной огнезащитной обработки стальных конструкций проводятся визуальный осмотр нанесенных огнезащитных покрытий для выявления необработанных мест, трещин, отслоений, изменения цвета, повреждений, а также измерения толщины нанесенного покрытия. Внешний вид и толщина слоя огнезащитного покрытия, нанесенного на защищаемую поверхность, должны соответствовать требованиям нормативных документов на покрытия конкретных типов.

4.8 Нормативные документы на средства огнезащиты считаются несоблюденными, если выпускаемая продукция, выполненные работы (оказанные услуги), режимы эксплуатации не соответствуют хотя бы одному из их требований.

4.9 Огнезащитные составы должны иметь техническую документацию (технологические регламенты, паспорта качества), разработанную производителем и зарегистрированную в установленном порядке.

4.10 Техническая документация должна содержать следующие показатели и характеристики огнезащитных составов:

— группу огнезащитной эффективности;

— расход для определенной группы огнезащитной эффективности;

— толщину огнезащитного покрытия для определенной группы огнезащитной эффективности;

— плотность (объемную массу) огнезащитных составов;

— сведения по технологии нанесения — способы подготовки поверхности, виды и марки грунтов, клеящих составов, число слоев, условия сушки, способы крепления и порядок изготовления (монтажа);

— виды и марки дополнительных (защитных, декоративных) поверхностных слоев огнезащитных составов в случае их применения;

— гарантийный срок и условия хранения средства огнезащиты;

— мероприятия по технике безопасности и пожарной безопасности при хранении огнезащитных составов и производстве работ;

— гарантийный срок и условия эксплуатации (предельные значения влажности, температуры окружающей среды и т.п.);

— возможность и периодичность замены или восстановления ОС в зависимости от условий эксплуатации;

— сведения о технологии подготовки ОС к огнезащитной обработке (если поставка ОС осуществляется не в готовом для применения виде);

— методы контроля качества и приемки выполненной огнезащитной обработки.

4.11 Проектирование и производство работ по огнезащите конструкций должны осуществляться организациями, допущенными к осуществлению данных видов деятельности в порядке, установленном действующим законодательством Российской Федерации.

4.12 Испытания по определению огнезащитной эффективности ОС должны проводиться профильными организациями, допущенными к осуществлению данного вида деятельности в порядке, установленном действующим законодательством Российской Федерации.

4.13 При использовании дополнительного (защитного, декоративного) поверхностного слоя средств огнезащиты огнезащитные характеристики следует определять с учетом этого слоя.

4.14 Показатели и характеристики огнезащитных составов, за исключением группы огнезащитной эффективности, определяются разработчиком технической документации, который несет установленную действующим законодательством Российской Федерации ответственность за их точность.

4.15 Нанесение огнезащитного состава на поверхности, ранее обработанные пропиточными, лакокрасочными и другими составами, в том числе огнезащитными составами других марок, допускается при положительных результатах исследований на совместимость. Исследования на совместимость должны включать установление огнезащитных, эксплуатационных свойств и срока службы огнезащитной обработки.

4.16 Упаковкой, условиями хранения и транспортирования огнезащитного состава должны быть обеспечены их огнезащитные свойства в течение установленного срока годности.

4.17 Не допускается применение средств огнезащиты на неподготовленных (или подготовленных с нарушениями требований технической документации на эти средства) поверхностях объектов защиты.

4.18 Средства огнезащиты для стальных строительных конструкций следует применять при условии оценки предела огнестойкости конструкций с нанесенными средствами огнезащиты с учетом всех элементов крепления и способов их установки по ГОСТ 30247.0, ГОСТ 30247.1 и разработки проекта огнезащиты.

4.19 Выбор вида огнезащиты осуществляется с учетом режима эксплуатации объекта защиты и установленных сроков эксплуатации огнезащитного покрытия. В случае строительства зданий и сооружений на площадках сейсмичностью 7, 8 и 9 баллов при применении средств огнезащиты должны выполняться требования СП 14.13330.

4.20 Огнезащиту стальных несущих конструкций в зданиях категорий А и Б следует выполнять средствами огнезащиты, обладающими достаточной взрывоустойчивостью. Не допускается применять плитные, минераловатные и другие средства огнезащиты, которые могут разрушиться при возможном взрыве.

4.21 Для зданий степеней огнестойкости I и II, а также для зданий и сооружений повышенного уровня ответственности не допускаются к применению огнезащитные минераловатные теплоизоляционные материалы ввиду недостаточной клеящей способности применяемых клеевых составов к минеральным волокнам.

ЗАЩИТА МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ ОТ ПОЖАРА

Конечно же, все знают, что металл не горит. Именно поэтому он получил такое большое распространение в строительстве. И, тем не менее, существуют специальные огнезащитные материалы для металла. Зачем защищать то, что не горит? Ответ на этот вопрос содержится в данной статье.

Металл в настоящее время – один из основных строительных материалов. Металлические конструкции обладают рядом неоспоримых преимуществ: высокой прочностью, относительно небольшим объемом, отличной обрабатываемостью, высокой технологичностью, малым временем сборки. Для строительства металл – идеальный материал. Но с точки зрения пожарной безопасности – не все так гладко. Основной недостаток строительных конструкций из металла – их низкая огнестойкость. В условиях пожара металлические конструкции быстро теряют свою прочность, что в конечном итоге приводит к разрушению здания или сооружения. Критической температурой для стальных конструкций является температура в 500 °С. После нагрева до 500 °С происходит потеря несущей способности стальных конструкций при номинальной нагрузке. Нагрев металлических конструкций в процессе пожара зависит от многих факторов. Но считается, что металлические конструкции при воздействии огня могут потерять прочность уже через четверть часа. Очевидно, что этого времени очень мало для эвакуации людей и организации тушения пожара. Поэтому строительными нормами и правилами предписывается организовывать защиту металлических конструкций от воздействия огня и нагрева при пожаре. Огнезащита металлических конструкций замедляет нагрев, увеличивает время достижения критической температуры и потери прочности конструкции.

Существует достаточно большой ассортимент способов и материалов, которые используют для защиты металлических конструкций от пожара. Выбор метода защиты металлической конструкции от пожара зависит от многих факторов:

  • ее типа и ориентации в пространстве (колонны, стойки, ригели, балки, связи),
  • вида нагрузки, действующей на конструкцию (статическая, динамическая),
  • температурно-влажностного режима эксплуатации и производства работ по огнезащите (сухие, мокрые процессы),
  • степени агрессивности окружающей среды, увеличении нагрузки на конструкцию за счет огнезащиты, эстетических требований и др.

Способы огнезащиты металлических конструкций

Основной методикой защиты металлических конструкций от воздействия пожара является устройство теплоизолирующих экранов, затрудняющих нагрев металлических конструкций.

По способу установки огнезащиту можно подразделить на листовую и рулонную, устанавливаемую с помощью дополнительных крепежных элементов и конструкций (с воздушной прослойкой между металлом и огнезащитным экраном) и материалы, изменяющие после нанесения агрегатное состояние (из жидкого — в твердое), наносимые непосредственно на металл и на теплозащиту.

Устройство теплозащитных экранов из листовых и рулонных материалов, выполняют с креплением как непосредственно на поверхность металлоконструкций, так и с помощью дополнительных каркасов (откосы, металлические профили). Для этого используют рулонные базальтовые материалы, полужесткие минераловатные плиты, гипсокартонные, стекломагниевые плиты и плиты из огнезащитных материалов, например перлита, вермикулита и других. Огнезащитные свойства этого способа заключаются в защите металла от прямого воздействия огня, экранировании (отражении) тепла, низкой теплопроводности. Материалы, используемые в качестве экранов можно подразделить на пассивные и активные. В качестве материала, испытывающего под действием огня структурные изменения, можно привести в пример перлитовые плиты. Перлит – вулканическое стекло, содержащее в себе большое количество связанной воды. При нагревании вода возгоняется до пара, под действием которого пластифицированная основа перлита увеличивается в 20 раз.

Минусами такой огнезащиты можно назвать высокую стоимость, большую трудоемкость установки и необходимость устройства декоративной отделки огнезащитных экранов.

По толщине покрытия огнезащиту подразделяют на:

— толстослойные (конструктивные) покрытия (с толщиной слоя от 3 мм);

— тонкослойные покрытия (с толщиной слоя менее 3 мм).

Среди толстослойных покрытий можно назвать обетонирование, обкладку кирпичом, оштукатуривание цементно-песчаными, либо штукатурками, содержащими огнезащитные материалы. Бетонную и кирпичную облицовки используют для повышения огнестойкости до 120 минут и более. Бетонную облицовку при толщине более 50 мм для обеспечения прочности армируют стальным каркасом, состоящим из поперечных хомутов и продольных стержней. Иногда для крепления дополнительно используются анкерные болты. Тонкие кирпичные обкладки (в четверть кирпича) для предотвращения разрушения под действием огня также армируют анкерными закладками. Штукатурку, в зависимости от толщины слоя, обычно армируют одинарной или двойной металлической сеткой.

Минусами толстослойных покрытий можно назвать высокую стоимость, трудоемкость устройства, существенное увеличение массы конструкций.

Решением проблемы увеличения массы конструкций стали современные штукатурки на основе перлита, вермикулита и других огнезащитных материалов. Такие штукатурки весят значительно меньше традиционных цементно-песчаных, более технологичны и обеспечивают лучшую огнезащиту при меньшей толщине.

Тонкослойные вспучивающиеся покрытия, получаемые с помощью специальных огнезащитных красок, характеризуются минимальной толщиной покрытия, высокой огнестойкостью (0,75 ч — 2 ч), эстетичным внешним видом, возможностью использования для защиты металлоконструкций практически на всех типах объектов, технологичностью нанесения, относительно низкой стоимостью. Вспучивающиеся краски отличаются более высокой эффективностью, поскольку образованное ими покрытие при нагревании начинают разлагаться с поглощением тепла, происходит выделение инертных газов и паров, не поддерживающих горение. В результате на поверхности металла образуется вспененный слой, представляющий собой закоксовавшийся расплав негорючих веществ. Объем покрытия в процессе вспучивания увеличивается в 10–50 раз. Поверхность вспененного слоя под воздействием пламени обугливается, образуя еще один теплоизоляционный слой. Образовавшийся на поверхности материала коксовый слой блокирует конвективный перенос тепла к защищаемой поверхности, подавляя пламя.

В заключение, хочется отметить, что развитие индустрии современных материалов, используемых для противопожарной защиты, с каждым годом позволяет обеспечить эту защиту дешевле, лучше, технологичнее. Побеспокоившись о защите от пожара заранее, вы можете обеспечить себе лишние полчаса на эвакуацию из горящего дома, огонь не успеет распространиться на соседние помещения, за эти 30 минут успеют приехать пожарные, будет меньше безвозвратных потерь.

Побеспокойтесь о защите заранее! Выбирайте лучшее!

Источник: gk-rosenergo.ru

Читайте также  Календула лекарственная (Calendulaofficinalis)
Оцените статью
klub-winx
Добавить комментарий