Защита от перенапряжения в частном доме

Защита от перенапряжения в частном доме

Защита от перенапряжения в частном доме

Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

Откуда возникает перенапряжение

Планировка и строительство многих многоэтажек еще пару десятков лет назад производилась без прицела на сегодняшнее многообразие бытового электрооборудования: микроволновки, многокамерные холодильники, утюги высокой мощности и другие приборы, имеющие электрическое питание. Поэтому максимумы потребления электричества по утрам и вечерам пагубно влияют на работу всей электросети в любом жилище.

Электричество, текущее по кабелю или проводу, неспособному выдерживать такую нагрузку, способствует их ненормальному нагреву в дневные часы и охлаждению в вечерние. В силу законов физики, проводник ослабевает, поскольку он делается то шире, то уже. Контакты в щитке на первых этажах или в едином вводно-распределяющем устройстве в доме заметно ослабевают. Также нулевые контакты могут отгореть, что приводит к перепаду напряжения от 110 до 360 вольт на всех этажах, выше этажа с перегоревшими контактами.

Перенапряжение в электросети может произойти в результате попадания молниевого разряда в линию электропередач, подстанцию или элементы дома, при этом сила тока просто огромная, порядка 200 килоампер. При попадании в молниеприемник и дальнейшем прохождении молнии по контуру заземления в проводниковых материалах возникает электродвижущая сила, измеряемая в киловольтах.

Также вызвать резкий скачок напряжения могут сварочные работы или одновременное включение многими соседями электроприборов или подключение/отключение мощного потребителя. Для защиты дорогостоящей электротехники и всего частного дома необходима защита от перенапряжения в сети.

Особенности защиты домашней электропроводки

Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.

Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.

Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой. Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е. устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.

Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе).

Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.

Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:

  • при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
  • вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.

Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.

При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики. Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием. По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.

Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других. При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».

Классы стойкости электропроводки

Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:

  • IV категория – до 6 киловольт;
  • III категория – до 4 киловольт;
  • II категория – до 2,5 киловольт;
  • I категория – до 1,5 киловольт.

В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса. Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт. Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.

Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения.

Основные устройства системы защиты

Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.

Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.

Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.

Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями. Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям. Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.

Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.

Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.

Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.

Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП. Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов. Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.

Видео

Как защитить дом от импульсных перенапряжений

В техподдержке интернет-магазина «АСберг АС» клиенты часто задают вопросы о том как защитить дом от перепадов напряжения, что такое устройства защиты от перенапряжения, какие они бывают и как их подбирать. Класс продукции УЗИП известен покупателям значительно меньше чем автоматические выключатели или УЗО и игнорирование защиты от перенапряжения часто служит причиной пожаров и выхода из строя дорогостоящего электронного оборудования в частных домах. Хотелось бы восполнить этот пробел в знаниях покупателей и рассказать более подробно о том, что такое УЗИП, для чего он нужен и как его подобрать.

УЗИП: особенности выбора и применения

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

Что такое УЗИП и для чего оно нужно?

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено Где применяется
I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта.
Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.
Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ).
Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты.
Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.
Монтируются и подключаются к сети в распределительных щитах.
Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью.
Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.
Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются.
Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Читайте также  Вредители капусты и меры борьбы сними

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S.
В системе заземления TN-C применяется трехполюсное УЗИП.
В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

Оценка значимости защищаемого оборудования

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

Группа Что включаетГде определяется
Первая Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей МЭК 62305-3
Вторая Меры защиты для минимизации отказов электрических и электронных систем МЭК 62305-4
Третья Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии) МЭК 62305-5

Оценка риска воздействия на объект

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (электроустановки зданий):

  • МЭК 60364-4-443 (защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).
  • МЭК 60364-4-443-4 (выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.

Выбор оборудования по МЭК 6036

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ. Это тот уровень, который должна выдерживать техника.
Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания Выбор защитной аппаратуры: бытовая техника и электроника Выбор защитной аппаратуры: производственное оборудование Выбор защитной аппаратуры: ответственное оборудование

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

Источник: Компания «АСберг АС»

Защита от перенапряжений в быту — все типы, все достоинства/недостатки

Как защитить свое имущество (и себя) от перенапряжений в электросети? Какие виды перенапряжений бывают?

Повышенное напряжение
Это постоянное или кратковременные превышение напряжения свыше допустимого допустимого, которым является 230/400 вольт +/-10% (ГОСТ).
Оно представляет опасность для бытовой техники. Может пострадать как блок питания, так и вся внутренняя электроника, на случай если встроенные в блок защиты не справятся.
Самые частые причины появления — неравномерная нагрузка на фазы (перекос) и обрыв нулевого проводника.

Пониженное напряжение
Это постоянное или кратковременное понижение напряжения ниже допустимого, которым является 230/400 вольт +/-10% (ГОСТ).
Хоть и не является перенапряжением, но упомянуть о нем стоит. Для современной бытовой техники с импульсными блоками питания оно не представляет опасности. Более того, в большинстве случаев блоки питания сейчас устанавливаются универсальные «глобальные», т. е. поддерживают весь диапазон мировых напряжений 100-240 вольт.
У приборов не содержащих импульсные блоки, возникают проблемы в связи с потерей мощности. ТЭНы (отопление, электрочайник, варочные панели и т.д.) просто теряют выдаваемую мощность, а к примеру компрессоры могут перестать стартовать из-за нехватки пусковой мощности.
Про последнее скажу больше. Ранее, на старых моделях холодильников, длительное пониженное напряжение часто приводило к пожару. Реле на включение компрессора срабатывало, а у мотора не хватало сил провернуть его на старте. В итоге он стоял в одном положении и под напряжением, что приводило к разогреву и возгоранию его самого или чего-либо вокруг. Именно так сгорели многие дачи.
Тоже самое касается высокомощной техники с электродвигателями. Например воздушный компрессор в гараже (без электронного управления) может точно так же как и старый холодильник «не завестись» и стоять под напряжением пока не полыхнет мотор.

Импульсные перенапряжения:

Это короткие и очень сильные всплески (порой превышающие 1000 вольт), отсюда и название.

Коммутационные
Происходят при рабочих процессах на подстанциях. Их естественно стараются сгладить, но они все равно есть.

Аварийные
Неисправности на подстанциях. Попадание молнии в воздушную сеть.

Коммутационные пагубно влияют на блоки питания в бытовой технике, при значительных «всплесках» могут вылетать внутренние предохранители и варисторы.
Аварийные способны превращать в пепел не просто то что включено в розетку, но даже электрощиты и саму проводку. Нередко заканчиваются пожаром.

Реле напряжения

Отключает фазу если напряжения выходят за заданный параметр.
Бывают как моноблочные так и раздельные, реле управления + контактор который коммутирует силовую часть.

Моноблочные

— способность восстановления подачи энергии после срабатывания
— часто имеют расширенный функционал (например контроль тока)
— компактны и занимают мало места в щите
— защищают от высокого и от низкого напряжения
— низкая стоимость

— низкая надежность и ресурс
— низкая коммутационная способность
— ограничения по мощностным показателям
— отсутствие защиты от импульсных перенапряжений

К сожалению сие бюджетное решение получило столь широкую распространенность не потому что это правильно, а просто потому что дешево и «экранчик есть». Увы, от большинства подобных изделий чаще больше вреда чем пользы.

Надо понимать что это наше локальное «изобретение». Крупные Европейские бренды (за редким исключением) такой продукции вообще не выпускают, по причинам приведенным выше.

В ходе моих личных испытаний и замеров, а так же по статистике от тех кто этими изделиями пользуется, выводы таковы:

— не использовать моноблочные реле напряжений с вводными автоматами выше С40
— обязательно устанавливать байпас рубильник для быстрого восстановления питания когда это чудо вдруг внезапно сдохнет

Куда более сложное и дорогое решение. Зато надежное и долговечное.

— способность восстановления подачи энергии после срабатывания
— высокая надежность и ресурс
— любая мощность и коммутационная способность (зависят от применяемого контактора)
— защищают от высокого и от низкого напряжения

— занимают много места в щите
— высокая стоимость в сравнении с мноноблочными (само реле + контактор)
— меньшая скорость срабатывания в сравнении с мноблочным реле
— проблемы с работоспособностью при низких напряжениях (зависит от модели контактора)
— отсутствие защиты от импульсных перенапряжений

Расцепитель перенапряжения

Отключает присоединенное к нему устройство (например вводной автомат) если напряжение превышает допустимое. Так же существуют расцепители низкого напряжения, которые срабатывают при пониженном.

— высокая надежность и ресурс
— не влияет на мощность и коммутационную способность (они зависят от присоединенного устройства)
— занимают крайне мало места в щите
— низкая стоимость

— неспособность восстановления подачи энергии после срабатывания
— отсутствие защиты от импульсных перенапряжений

УЗИП (Устройство Защиты от Импульсных Перенапряжений)

В зависимости от класса и конструкции, это либо газовый разрядник либо варистор (либо комбинация двух). Модуль УЗИП подключается к фазам, нолю и земле, сразу после вводного автомата. При появлении на вводе импульса, он резко снижает свое сопротивление, замыкая фазу и/или ноль на землю, тем самым он не пропускает всплеск дальше себя в проводку квартиры/дома.

— защита от всевозможных импульсных перенапряжений
— любая мощность и коммутационная способность (УЗИП подключается к сети параллельно)
— крайне высокая скорость срабатывания

— не защищает от постоянного повышенного напряжения, только от всплесков
— не работает без полноценного заземления
— неспособность восстановления подачи энергии после срабатывания
— ресурс определяется количеством полученных разрядов
— высокая цена за качественные модели
— иногда требуется доп защита самого УЗИПа

Частая ошибка — многие считают что все модули УЗИП одинаковые и подключаются одинаково. Естественно это не так и зависит от применяемой системы заземления. Вот схема для осознания сего факта.

Так же многие считают что УЗИП защищает и от постоянного повышенного напряжения. Но это не так. УЗИП рассчитан на работу со всплесками, а постоянное перенапряжение портит даже его самого, так же как бытовую технику.

Стабилизатор

В отличии от остальных типов защиты которые просто отключают внутридомовую проводку от ввода, стабилизатор корректирует параметры входного напряжения, старясь уложить их в норматив (чем стабилизатор дороже, тем лучше ему это удается).

— стабилизирует напряжение на постоянной основе

— требует импульсной защиты на вводе (УЗИП)
— требует пространства и охлаждения вне щита
— низкий ресурс и надежность у бюджетных моделей
— крайне высокая цена за надежные модели

Полная защита

Полноценная защита это всегда комбинация устройств, каждое из которых выполняет свою функцию.

В интернете и среди начинающих электриков бытует ошибочное мнение что для эффективной защиты от всех видов перенапряжений достаточно просто поставить дешевое моноблочное реле за 2500р и на этом все. Увы, это не является полноценным решением проблемы.

Обязательное требование для полноценной защиты — УЗИП класса 2 в распределительном щите (квартиры и загородные дома). А если речь идет о загороде и воздушных линиях электропередачи, так же УЗИП класса 1 на вводе (как правило в щите учета).

Читайте также  12 идей красивого освещения террасы

В квартирных щитах для современного жилья (новострой, ввод — одна фаза 50-63А) наиболее рациональна комбинация — расцепитель перенапряжения + УЗИП класса 2.

В квартирных щитах для старых построек (вторичка, ввод — одна фаза 25-40А) установка УЗИПа как правило невозможна из-за отсутствия заземления или неправильной его реализации (некорректная модернизации системы заземления с TN-C до TN-C-S при капремонте). Там просто расцепитель или реле напряжения (по вкусу).

Загород с его воздушными линиями это отдельная песня. Там обязательно реле напряжения из-за того что сеть может гулять туда-сюда по 5 раз на дню. Т.к. вводные токи низкие, допустимо применение моноблочных реле напряжений с целью экономии. УЗИП класса 1 в ЩУ и класса 2 в ЩР крайне желательны, но упираются в наличие правильно реализованного контура заземления, и конечно же в бюджет как итог.

Стабилизатор напряжения это не сколько защита сколько обеспечение стабильной работы электропотребителей в нестабильных сетях. Использование стабилизатора в качестве защиты — такое себе занятие. Это отдельная тема и про них мне стоит сделать целую отдельную запись.

Вместо итога

Вот так коротко и без лишних слов, чтобы было понимание основ. В последующих записях вы увидите реализацию подключения и подбора компонентов в каждом конкретном случае.

(тут будут ссылки на продолжения с примерами)

—-
Остальные мои записи по электрике вы найдете тут.

Скачки напряжения – не беда, если в щиток вмонтирована надежная защита

Конструктивное несовершенство электрических сетей является основной причиной резких скачков напряжения. Предугадать время очередного перепада невозможно. Единственное, что мы можем сделать для предотвращения неприятных последствий – это заранее обезопасить электрических потребителей в своем доме. В этой статье мы расскажем, как и чем защитить сеть квартиры и дома.

Что спасет от скачка напряжения

Защита от перепадов напряжения возможна при помощи разных типов защитных устройств. Мы поговорим о самых распространенных. Это реле контроля напряжения (РН) и бытовые стабилизаторы.

Реле защиты от скачков напряжения

Защита дома от скачков напряжения с помощью РН рекомендуется в тех случаях, когда напряжение в сети устойчиво, а его заметные скачки редки. РН представляет собой устройство, способное считывать параметры электрического тока и разрывать электрическую цепь в тот момент, когда показатели выйдут за пределы заданного диапазона. После того, как показетели в общей сети нормализуются, устройство автоматически замкнет цепь и возобновит питание потребителей. Функция возобновления питания через заданный промежуток времени (с задержкой), встроенная в реле напряжения 220в для дома, помогает продлить срок службы некоторых бытовых устройств, холодильников и т.п.

РН обладают небольшими габаритами, сравнительно низкой стоимостью и хорошим быстродействием. К недостаткам РН можно отнести их неспособность сглаживать колебания электрической энергии. Для максимальной защиты всех потребителей потребуется установить сразу несколько устройств.

Современные модели РН бывают трех типов:

1. Стационарное реле, встраиваемое в электрический щиток дома или квартиры.

2. Реле для индивидуальной защиты одного потребителя.

3. Реле индивидуальной защиты нескольких потребителей.

Если с эксплуатацией реле второго и третьего типа все практически ясно, то РН первого типа имеет более сложную конструкцию, а его установка требует определенных знаний. Подобные устройства монтируются на входе в помещение, так выполняется защита от скачков напряжения в сети всего домашнего электрооборудования.

Выбор РН

Выбирая реле, чтобы защитить домашнюю сеть, достаточно знать номинал электрического тока, который способен пропускать через себя вводной автоматический выключатель. Если, к примеру, пропускная способность выключателя равна 25А (что соответствует потребляемой мощности – 5,5 кВт), то рабочие характеристики РН должны быть на ступень выше – 32А (7 кВт). Если выключатель рассчитан на 32А, то реле должно выдерживать ток в 40 – 50А.

Некоторые люди выбирают марку РН, опираясь на суммарную потребляемую мощность. Это не совсем правильно. Ведь реле, способное выдерживать ток в 32А, может спокойно работать как при нагрузке в 7 кВт, так и при гораздо большей мощности потребления. Только во втором случае в рабочую схему РН необходимо встраивать специальный магнитный контактор. Но об этом в следующем разделе.

Установка РН

Стандартная схема установки РН в распределительный щиток показана на рисунке. Это наиболее простая защита от скачка напряжения.

Как видим, все просто: реле контроля устанавливается сразу после электрического счетчика и подключается к фазному проводу, через который осуществляется электроснабжение всего дома. При скачке за пределы выставленного (регулируемого) диапазона реле отсоединяет внешнюю питающую сеть от внутренней электропроводки, и выполняется защита от скачков напряжения в квартире и в доме.

РН, вмонтированное в панель щитка, занимает минимум пространства на DIN-рейке.

Если мощность потребителей домашней сети даст в сумме 7 кВт и более, производители настоятельно рекомендуют встраивать в рабочую схему РН дополнительный электромагнитный контактор. Хотя, надежный контактор в общей схеме никогда не станет лишней деталью, смотрим следующий комментарий:

Это устройство помогает разгрузить контакты РН, самостоятельно разъединяя силовую линию от общей сети бытовых потребителей. Реле контроля, в момент недопустимого перенапряжения, лишь подает команду на отключение. После этого электромагнитная катушка контактора разъединяет силовые контакты, соединяющие внешнюю и внутреннюю сети. Схема подключения в этом случае будет следующей:

Защита от скачков напряжения 220в

Для того чтобы РН смогло принести пользу своему владельцу, его рабочие параметры (пределы допустимых напряжений и время задержки возобновления питания) необходимо правильно отрегулировать. Если в рабочей схеме используется одно РН, то устанавливать пределы допустимых значений следует, ориентируясь на характеристики бытовой техники, чувствительной к перепадам. Наиболее чувствительным и дорогостоящим оборудованием является аудио- и видеотехника. Диапазон допустимых значений напряжения для нее составляет 200 – 230В.

Для того чтобы обеспечить максимально надежную защиту всех потребителей, следует использовать электрическую схему с несколькими реле. Рабочая схема защиты, включающая несколько РН, позволяет разбить потребителей по группам – в соответствии с их чувствительностью к перенапряжению:

  1. К первой группе относится аудио- и видеотехника (допускаемые значения напряжения – 200 – 230В);
  2. Ко второй можно отнести бытовую технику, оснащенную электрическим двигателем: холодильники, кондиционеры, стиральные машины и т. д. (допускаемые значения – 190 – 235В);
  3. Третья группа – это простые нагревательные приборы и освещение (допускаемые значения – 170 – 250В).

Каждая группа потребителей подключается к своему РН. В такой схеме рабочие параметры каждого реле настраиваются индивидуально.

Время задержки возобновления питания должно соответствовать эксплуатационным требованиям, предъявляемым к бытовой технике. Для некоторых холодильников, к примеру, рекомендуемая задержка равняется 10 минутам.

Защита трехфазной сети с помощью РН

Если электроснабжение вашего дома осуществляется через трехфазную систему, то на каждую фазу целесообразно устанавливать отдельное реле контроля.

Стабилизаторы напряжения

Если в вашем доме наблюдаются постоянные скачки напряжения, то РН будет срабатывать несколько раз в сутки, обесточивая весь дом. Поэтому в таких случаях рекомендуется менее простой, более дорогой, но и более практичный способ защиты домашней электроники. Состоит он в применении стабилизаторов – устройств, сглаживающих скачки напряжения во внешней сети, выдавая на выходе постоянный показатель 220В.

По типу подключения различают два вида стабилизаторов: локальные (которые подключаются к розетке, защищая от одного до нескольких потребителей) и стационарные (подключаемые к вводному силовому кабелю и осуществляющие защиту всех потребителей домашней сети). Локальные стабилизаторы следует использовать для защиты наиболее чувствительной бытовой техники. Их можно эксплуатировать в комплекте со стационарным РН.
Стационарные стабилизаторы представляют собой сложные устройства, которые не только сглаживают перепады напряжения во всей бытовой сети, но и способны спасти дорогую технику, автоматически отключая питание потребителей при перегрузке и достижении критических значений.

Устанавливать стационарные стабилизаторы крайне рекомендуется, если значение напряжения несколько раз в сутки выходит за пределы 205…235В (это можно определить с помощью обыкновенного тестера).

Как выбирать стабилизатор

Выбирать стабилизатор следует, исходя из суммарной мощности домашних потребителей. Устройство обязательно должно обладать приличным запасом мощности.

Стабилизатор напряжения в щиток: установка

Устанавливать стабилизатор рекомендуется вблизи силового щитка в соответствии со следующей схемой.

Защита трехфазных сетей с помощью стабилизатора

Сразу скажем, что трехфазные стабилизаторы призваны защитить исключительно трехфазные потребители. Если же к вашему дому подходит трехфазное питание, то для создания устойчивого напряжения во внутренней сети целесообразно устанавливать на каждую фазу отдельный однофазный стабилизатор.

Подобный подход позволит существенно снизить ваши затраты (3 стабилизатора мощностью 5, 7 и 10 кВт всегда дешевле одного устройства, рассчитанного на 30 кВт). К тому же, при просадке напряжения на одной из фаз, трехфазное устройство обесточит весь дом. Это конструктивная особенность стабилизатора, ориентированного на защиту трехфазных электродвигателей.

Обсудить особенности выбора и эксплуатации стационарных стабилизаторов вы можете, посетив соответствующий раздел нашего форума. Если вам интересно поделиться личным опытом установки реле контроля напряжения в паре с контактором, то на этот случай у нас тоже найдется подходящая тема. А видео, подробно описывающее монтаж щитка и распределительной коробки, поможет вам подключить квартиру к системе электроснабжения в соответствии с общепринятыми правилами электромонтажных работ.

7 советов по защите сети от перенапряжения в квартире и доме

Разряд молнии, обрыв проводов, обрыв нулевого контакта – это самые распространенные причины перенапряжения в сети. Среди самых же распространенных последствий – выход из строя дорогостоящей техники, но это в лучшем случае. Самый печальный исход – короткое замыкание, возгорание и угроза жизни. Конечно, мы не можем воздействовать на погоду и никак не повлияем на ряд аварийных ситуаций, но обезопасить себя от последствий в наших силах. Разбираемся, как защитить квартиру и дом от перенапряжения и скачков напряжения в сети.

Причины перенапряжения

Нормальным напряжением для однофазной сети в квартире – всем известные 220 В, но ГОСТ 29322-2014 предусматривает наличие небольшой погрешности – в переделах 10%, т.е. напряжение в наших сетях может колебаться от 198 до 242 В. Все, что выше и ниже, — уже несет разного рода опасность.

Откуда же возникают скачки напряжения в сети? Причин несколько:

  • попадание в подстанцию, линию электропередач или элементы дома разряда молнии, а его сила тока достигает 200 кА;
  • сварочные работы, включение мощного оборудования или одновременная работа многочисленных электроприборов в многоквартирном доме;
  • обрыв нулевого контакта, в результате чего напряжение может скакать от 110 до 360 В. Одна из причин обрыва нулевого контакта кроется в возросшем количестве используемой техники. Многие дома проектировались и строились тогда, когда электроприборов не было так много. Сегодня же в утренние часы в каждом доме включается масса оборудования: плиты, чайники, пылесосы, стиральные машинки, обогреватели, бойлеры и т.д. Часто провода работают на пике своих возможностей, потому утром и вечером перегреваются, затем сильно охлаждаются, и как следствие проводник ослабевает, и нулевой контакт может вообще отгореть;
  • обрыв проводов вследствие непогоды, аварии. Напряжение в сети может резко взлететь в несколько раз;
  • неправильное подключение проводов в щитке;
  • сбои в работе электрической станции.

Высокое напряжение может стать причиной появление искры в диэлектрическом слое, далее последует появление электрической дуги, что уже чревато возгоранием. Опасность также несет и слишком низкое напряжение. Холодильник, например, будет тяжелее запускаться, что скажется на его работоспособности.

Большинство приборов рассчитаны на работу при напряжении примерно 200-240 В, но частые, пусть и не очень большие, отклонения от «идеальных» 220 В влияет на долговечность. Если что-то «сгорит» по причине перенапряжения, то гарантией ремонт не покрывается.

Чтобы защитить квартиру и дом от неблагоприятных последствий скачков напряжения в сети, используют следующие принципы:

  • отключение электричества при резком повышении напряжения;
  • вывод излишнего электрического потенциала на заземляющий контур;
  • стабилизация входящего напряжения до идеальных 220 В.

Конечно, для защиты домашней сети лучше подходить комплексно, проводить полную реконструкцию электрической системы, но в многоквартирном доме, например, сделать это крайне сложно. Десятки жильцов просто никогда не придут к единому мнению и не договорятся о совместной оплате, потому действовать придется локально – на уровне собственной квартиры. Владельцам частного дома в этом плане немного проще.

Помогут ли пробки или автоматы? Пробки долгое время были единственной защитой от короткого замыкания и перегрева. Им на смену пришли более удобные автоматические выключатели. Безусловно, они нужны и в ряде ситуаций защищают сеть, но спасти от последствий удара молнии или подачи высокого напряжения не смогут.

Читайте также  Лук душистый

Реле контроля напряжения

Реле контроля напряжения (РКН) работает достаточно просто. Оно постоянно измеряет напряжение, сравнивает полученные показатели с допустимыми значениями и при ощутимом повышении напряжения просто прекращает подачу электропитания. Обратите внимание, реле не умеет выравнивать напряжение. Когда показатели напряжения придут в норму, реле снова «пропустит» электричество к электроприборам.

Возвращение к работе в штатном режиме происходит с некоторой задержкой, необходимой, чтобы крупная бытовая техника запустилась правильно. Отключение питания происходит практически молниеносно – реле требуется всего лишь 2-3 мс.

Реле может быть выполнено в двух вариантах:

  • блок, который устанавливается в распределительный щиток на DIN-рейку;
  • устройство, напоминающее удлинитель, с гнездами для розеток.

Наиболее распространенным и эффективным является способ установки реле в щиток. При этом лучше, если РКН будет установлено до монтажа счетчика, чтобы и это оборудование также было защищено от перепада напряжения. Несмотря на относительную несложность установки реле, лучше все же доверить электромонтажные работы питер специалистам, которые сделают все быстро и качественно, соблюдая стандарты и оговоренные сроки выполнения.

Преимущества использования реле напряжения:

  • устройство не занимает много места;
  • работает тихо;
  • стоит недорого;
  • простота в монтаже и подключении;
  • реле потребляет крайне мало электроэнергии;
  • отображение показателей напряжения в реальном времени.

Минусы:

  • не подходит для жилищ с постоянными скачками напряжения, иначе регулярное выключение всех приборов очень скоро сведет вас с ума. Это не минус, а скорее, особенность работы, определяющая сферу использования реле – дома и квартиры с редкими скачками напряжения;
  • не может защитить от импульсного скачка при ударе молнией. Если во время молнии в реле попадет грозовой импульс, то оно повредится. Импульс пойдет дальше по проводке и испортит все те приборы, которые включены в сеть (даже если они на тот момент не работают).

Датчик перепадов напряжения

Задача у него такая же, как и у реле, — в случае обнаружения недопустимого для сети напряжения просто прерывать подачу электричества к приборам. Принцип же работы немного отличается. Датчик устанавливается вместе с устройством защитного отключения (УЗО). Если будет обнаружено опасное для сети напряжение, датчик создает утечку тока, а автомат защиты в этом случае обесточивает сеть.

Устройство защиты от импульсных перенапряжений (УЗИП)

Эти приборы, в отличие от реле, могут защитить сеть от быстрых и очень мощных перепадов напряжения, возникающих при ударе молнии. Установка подобного оборудования – не самое дешевое удовольствие, но все работы уж точно обойдутся дешевле бытовой техники.

УЗИП бывает двух видов:

  • ограничители перенапряжения (ОПН). В основе этого устройства находится варистор. При нормальной работе сетей, когда нет скачков напряжения на линии, ограничитель напряжения не проводит ток и обладает большим сопротивлением. Как только возникает кризисная ситуация, сопротивление варистора устройства моментально понижается до самого минимального значения. Таким образом, импульс отправляется в заземляющий контур. ОПН таким образом ограничивает колебания напряжения и делает их безопасными. Оборудование и люди, находящиеся в помещении, оказываются под надежной защитой. ОПН занимает немного места, активно используется в частных домах;
  • искровые и вентильные разрядники – вариант для сетей высокого напряжения. При возникновении большого скачка напряжения происходит пробой воздушного слоя, фаза замыкается на заземление, и весь разряд идет в землю.

В домашней электрической проводке устанавливаются модульные ограничители перенапряжения. Их монтируют в распределительный щиток, поэтому они совершенно не занимают место. По своей сути, это такой же ограничитель, как и то, что используется в электросети. Заработает он только тогда, когда возникнет критическая ситуация. Но крайне важно, чтобы было проведено заземление электропроводки. Если такой нет, то модульный ОПН будет совершенно бесполезным.

Стабилизатор напряжения

Наиболее подходящее устройство, если в сети нередки перепады напряжения. Стабилизатор устроен так, что способен выравнивать напряжение, поддерживая его на одном значении на выходе. Граничные пределы устанавливаются примерно на уровне 110 и 250 В. В этих границах стабилизатор будет выравнивать напряжение, отдавая пользователю положенные 220 В. Если напряжение ниже или выше заданных значений, питание будет автоматически отключено.

Стабилизаторы бывают нескольких видов:

  • релейные – самые простые, с небольшой мощностью и невысокой ценой, подходят для использования в квартире;
  • сервоприводные – стоят дороже релейных, но по своим возможностям не особо превосходят релейные;
  • электронные – более дорогие и долговечные, имеют хорошие показатели быстродействия, способны справиться практически с любыми скачками напряжения, но и стоят недешево;
  • электронные двойного преобразования – самые надежные, самые долговечные, самые эффективные. Если необходимо защитить дорогое оборудование, то они подходят наилучшим образом. Минус – высокая цена.

При выборе стабилизатора учитывайте предельные значения напряжения, а также суммарную мощность подключенных электроприборов. Чтобы не ошибиться, лучше за помощью обратиться к специалистам.

Источник бесперебойного питания (ИБП)

Часто источники бесперебойного питания ошибочно называют стабилизаторами. Это в корне неверно, так как принцип работы у них совершенно разный. ИБП не стабилизирует напряжение и вообще никак на него не может повлиять. Внутри у него установлены аккумуляторы, заряда которых должно хватить, чтобы пользователь при отключении электроэнергии смог плавно завершить работу с техникой. Обычно бесперебойник – лучший друг домашнего компьютера. Для защиты всей сети не подходит.

Есть ИБП со встроенным стабилизатором. Такие устройства способны нивелировать небольшие скачки напряжения, но и стоят они недешево.

Сетевой фильтр

Простой сетевой фильтр способен защитить подключенное в него оборудование при скачках напряжениях до 380 В и даже 450 В, но для этого сам фильтр должен быть качественным и точно не самым дешевым. Но даже в случае с надежным фильтром напряжение более 450 В выведет его из строя, зато техника останется в сохранности, а вам придется покупать новый фильтр. Сетевой фильтр также станет неплохой защитой от импульсов, возникающих при сварочных работах, но не защитит при импульсе от разряда молнии.

В завершение хотелось бы предупредить вас от экономии на собственной безопасности. Вы можете возразить, сказав, что вот у соседа никакой защиты от перенапряжения нет, и вот уже сколько лет все в порядке, но многочисленные случаи выхода из строя техники и пожаров по вине резких скачков напряжения должны убедить грамотного человека в необходимости обустроить адекватную защиту. Что выбрать, реле, стабилизатор или УЗИП, — решать вам, отталкиваясь от своего места проживания, частоты скачков напряжения и дороговизны используемой техники.

Устройство защиты от импульсных перенапряжений (УЗИП) для частного дома

Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.

Причины возникновения импульсного перенапряжения

ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.

Для чего нужно подключение УЗИП?

Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.

Наглядно про УЗИП на видео:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Классы устройств защиты от ИП

Существует 3 класса аппаратов защиты линии от перенапряжения:

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Рассказ про УЗИП от специалистов компании ABB на видео:

Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.

Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий