Что такое электрическое поле и какими свойствами оно обладает

Что такое электрическое поле и какими свойствами оно обладает

Что такое электрическое поле, его классификация и характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

Рис. 3. Электрический диполь Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Рис. 7. Линии напряжённости различных полей

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Электрическое поле

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Содержание

Энергия электрического поля

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического поля.

Классификация

Однородное поле

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Читайте также  Снимаем показания со счетчиков Меркурий, Микрон, Энергомера

Наблюдение электрического поля в быту

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле внутри проводников с избыточными зарядами

Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов

При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

Электрическое поле и его характеристики

Время на чтение:

Современные представления предполагают, что электрозаряды не действуют друг на друга непосредственным образом. Абсолютно любое заряженное тело создает вокруг себя ЭП, которое воздействует на окружающее этот объект пространство. Оно может появляться и создаться при прохождении через проводник электричества и оказывает силовое воздействие на все другие заряженные тела. Основное свойство как раз в этом и заключается. В этой статье будет подробно разобрано, какие свойства электрического поля есть и какова структура электрополя.

Что это такое

Электрическое поле — это особое векторная характеристика, которая действует на все обладающие электрозарядом частицы, находящиеся в ее радиусе действия. Это электрополе входит в состав электромагнитного, то есть для него характерно отсутствие визуальной составляющей. Это значит, что ЭП нельзя увидеть глазами и оно может быть зафиксировано только в результате воздействия за заряженные частицы.

Напряженность и потенциал ЭП

Важно! На последнее реагируют все заряженные электрочастицы и тела, обладающие другими (противоположными) полюсами.

Электрополе — особая форма состояния материи, которое проявляется в ускорении электрочастиц и определенных тел, которые обладают электро зарядом. К особенностям электрополя относятся:

  • Оно действует только при наличии электро заряда;
  • Оно не имеет определенных четких границ;
  • ЭП обладает определенной величиной воздействия;
  • Его определить только по результату его воздействия.

Принцип суперпозиции

Характеристика ЭП неразрывно связана с зарядами. Они находятся в определенной электрочастице или теле. Преобразование ЭП происходит в двух случаях:

  • При появлении вокруг него электрозарядов;
  • При перемещении волн электромагнитной природы, которые способствуют изменению электрополя.

Работа сил ЭП

Электрополе влияет на неподвижные относительно наблюдателя объекты в виде электро заряженных частиц или тел. В конечном итоге они получают силовое влияние. Пример воздействия ЭП можно наблюдать и в бытовой ситуации. Для этого достаточно создать электрозаряд достаточной мощности. Книги по теоретической физике предлагают для этого простейший эксперимент, когда диэлектрик натирается о шерстяное изделие. Получить электрополе вполне можно просто, взяв пластиковую шариковую ручку и потерев ее о волосы или шерсть. На ее поверхности образуется заряд, который приводит к появлению электрополя. Как следствие ручка притягивает мелкие электрочастицы в виде волос или бумаги. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластмассовой расчески.

Также примером появления электрополя в быту является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя различные электрозаряды. При снятии такого предмета одежды с тела ЭП подвергается различным силам воздействия, которое приводит к образованию вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов, которые сделаны из синтетических материалов.

Сделал открытие и впервые подтвердил наличие электрополя Майкл Фарадей — английский физик и экспериментатор. Именно он внес в физику понятие «поля» и установил основы его концепции, его физическую реальность.

Важно! Фарадей ввел понятие ЭП при исследовании диамагнетизма и парамагнетизма, когда он обнаружил небольшое отталкивание специальным магнитом ряда веществ.

Свойства

Основные свойства ЭП:

  • Источником самого ЭП являются заряженные частицы и переменные ЭП магнитного происхождения. ЭП неразрывно связано с магнетизмом. Источником поля электростатической природы являются неподвижные электростатические заряды;
  • ЭП воздействует на внесенные в него электрозаряды с некоторой силой;
  • Скорость распространения электрического поля равна конечность скорости света в вакууме, то есть константе C, которая равна 3 * 10 в 8 степени метров в секунду;
  • Обнаружение электрополя происходит по его воздействию на другие электрически заряженные тела;
  • ЭП подчиняются принципу суперпозиции, то есть наложения. Это означает, что в каждой точке, пространства, электрополя действуют, как будто других сил воздействия нет. В данной точке, их суммарное воздействие на пробный электрозаряд определяется как сумма воздействий действующих ЭП.

Различают несколько основных видов электрополей. Отличие зависит от того, где оно существует. Следует рассмотреть несколько примеров возникающих сил в различных ситуациях:

  • Когда заряженные электрочастицы неподвижны. Это называется статическим ЭП;
  • Когда заряженные электрочастицы находятся в движении по проводнику. Это называется магнитным полем, которое не следует отождествлять с электрическим;
  • Стационарное ЭП возникает вокруг неподвижных проводников с неизменяющимся током.

В радиоволнах есть ЭП и МП. Они расположены в пространстве перпендикулярно друг другу. Это происходит, потому что любое изменение магнитного поля порождает возникновения электрополя с замкнутыми силовыми линиями.

Вихревые электромагнитные волны

Структура электрического поля

Для того чтобы понять структуру электрического вначале следует определить потенциал. Говоря просто, потенциал — это действие по переведению какого-либо тела или заряда из начального места в конкретный пункт размещения. Потенциал в сфере электрополя — это своеобразная энергия, которая двигает электрон. В результате движения он перемещается с точки так называемого нулевого потенциала в другую точку, имеющую ненулевой потенциал.

Чем выше потенциал, который потрачен на передвижение электрического заряда или тела, тем более значительной будет плотность потока на единице площади. Это явление сравнимо с законом гравитации: чем больше вес тела, тем выше энергия, действующая на него, а, значит, значительнее плотность гравитационной характеристики. В естественных условиях существуют заряды с незначительным потенциалом и с низкой степенью плотности, а также заряженные частицы и тела с высоким потенциалом и насыщенной плотностью потока. Такое явление, как работа по перемещению электрозаряда, наблюдается при грозе и молнии, когда в одном месте происходит истощение электронов, а в другом — их насыщение, образовывающее своеобразное электрически заряженное ЭП, когда происходит разряд в виде молнии.

Переменное МП

Как определить

Для количественного определения электрополя вводится значение силы напряженности электрического поля. Ею называют физическую величину, равную отношению силовых характеристик, с которыми ЭП воздействует на положительный пробный электрозаряд, находящийся в некоторой точке пространства, к величине этого заряда. Она равна E = F/q.

Течение жидкости под действием магнитных волн

Напряженность представляет собой векторную величина физического типа. Направление векторов силы в каждой точке конкретной области пространства соответствует направлением сил, воздействующих на положительный пробный заряд.

Формула напряженности поля между двумя зарядами

Электрополе неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это ЭП обозначают общим термином — электрическое поле

Если ЭП исследуется с помощью пробного заряда и создается сразу несколькими заряженными телами, то конечная силовая характеристика оказывается равной геометрической сумме сил, которые воздействуют на электрозаряд со стороны всех заряженных тел по отдельности. Следовательно, напряженность электрополя, которая создается набором зарядов в конкретной точке пространства, равна векторной сумме напряженностей ЭП, создаваемых в той же точке зарядами в отдельности: E = E1 + E2 + E3 +…

Напряженность точечного заряда

Таким образом, было определено, какими свойствами обладает электрическое поле и какова его структура. Все тела создают электрополя, если они заряжены. Понять, есть оно или нет нельзя визуальным путем. Для этого нужно подтвердить его воздействие на окружающие объекты.

Электрическое поле. Виды и работа. Применение и свойства

Электрическое поле – это векторное поле, действующее вокруг частиц обладающих электрическим зарядом. Оно входит в состав электромагнитного поля. Для него характерно отсутствие реальной визуализации. Оно невидимо, и может быть замечено только в результате силового воздействия, на которое реагируют другие заряженные тела с противоположными полюсами.

Как устроено и действует электрическое поле

По сути, поле является особым состоянием материи. Его действие проявляется в ускорении тел или частиц, обладающих электрическим зарядом. К его характеризующим особенностям, можно отнести:

  • Действие только при наличии электрического заряда.
  • Отсутствие границ.
  • Наличие определенной величины воздействия.
  • Возможность определения только по результату действия.

Поле неразрывно связано с зарядами, которые находятся в определенной частице или теле. Оно может образовываться в двух случаях. Первый предусматривает его появление вокруг электрических зарядов, а второй при перемещении электромагнитных волн, когда меняется электромагнитное поле.

Электрические поля воздействуют на неподвижные относительно наблюдателя электрически заряженные частицы. В результате они получают силовое влияние. Пример воздействия поля можно наблюдать и в быту. Для этого достаточно создать электрический заряд. Учебники физики предлагают для этого простейший пример, когда диэлектрик натирается о шерстяное изделие. Получить поле вполне возможно, взяв пластиковую шариковую ручку и потерев ее о волосы. На ее поверхности образуется заряд, что приводит к появлению электрического поля. Как следствие ручка притягивает мелкие частицы. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластиковой расчески.

Читайте также  Выращивание кабачков цуккини наприусадебном участке

Бытовым примером проявления электрического поля является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя заряды. При снятии такого предмета одежды электрическое поле подвергается различным силам воздействия, что и приводит к образованию световых вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов.

Свойства поля

Для характеристики электрического поля применяется 3 показателя:

  • Потенциал.
  • Напряженность.
  • Напряжение.

Потенциал

Данное свойство является одним из главных. Потенциал указывает на количество накопленной энергии применяемой для перемещения зарядов. По мере их сдвига энергия расточается, постепенно приближаясь к нулю. Наглядной аналогией данного принципа может выступить обыкновенная стальная пружина. В спокойном положении она не обладает никаким потенциалом, но только до того момента, пока не будет сжата. От такого воздействия она получает энергию противодействия, поэтому после прекращения влияния обязательно разогнется. Когда пружина отпускается, то моментально распрямляется. Если на ее пути окажутся предметы, она начнет их двигать. Возвращаясь непосредственно к электрическому полю потенциал можно сравнить с приложенными усилиями на выпрямление назад.

Электрическое поле обладает потенциальной энергией, что и делает его способным выполнять определенное воздействие. Но перемещая заряд в пространстве, оно истощает свой ресурс. В том же случае если передвижение заряда внутри поля осуществляется под воздействием сторонней силы, то поле не только не теряет свой потенциал, но и пополняет его.

Также для большего понимания данной величины можно привести еще один пример. Предположим, что незначительный положительно заряженный заряд располагается далеко за пределами действия эл.поля. Это делает его совершенно нейтральным и исключает взаимный контакт. Если же в результате воздействия любой сторонней силы заряд будет двигаться по направлению к электрическому полю, то достигнув его границы, будет втянут в новую траекторию. Энергия поля, затраченная на влияние относительно заряда в определенной точке воздействия, и будет называться потенциалом на этой точке.

Выражение электрического потенциала осуществляется через единицу измерения Вольт.

Напряженность

Этот показатель применяется для количественного выражения поля. Данная величина рассчитывается как отношение положительного заряда воздействующего на силу действия. Простым языком напряженность выражает силу эл.поля в определенном месте и времени. Чем выше напряженность, тем более выраженным будет влияние поля на окружающие предметы или живые существа.

Напряжение

Этот параметр образуется от потенциала. Он применяется для демонстрации количественного соотношения действия, которое производит поле. То есть, сам потенциал показывает объем накопленной энергии, а напряжение демонстрирует потери на обеспечение движения зарядов.

В электрическом поле положительные заряды перемещаются от точек с высоким потенциалом в места, где он ниже. Что касается отрицательных зарядов, то они движутся противоположно. Как следствие осуществляется работа с использованием потенциальной энергии поля. Фактически напряжение между точками качественно выражает работу, совершенную полем для переноса единицы противоположно заряженных зарядов. Таким образом, термины напряжение и разность потенциалов это одно и то же.

Наглядное проявление поля

Электрическое поле имеет условное визуальное выражение. Для этого применяются графические линии. Они совпадают с линиями воздействия силы, которые излучают заряды вокруг себя. Помимо линии действия сил, также важно их направление. Для классификации линий за основу определения направлений принято использовать положительный заряд. Таким образом, стрелка движения поля идет от положительных частиц к отрицательным.

Чертежи, изображающие эл.поля, на линиях имеют направление в виде стрелки. Схематически в них всегда есть условное начало и конец. Таким образом, они не замыкаются сами на себе. Силовые линии берут свое начало на точке нахождения положительного заряда и заканчиваются на месте отрицательных частиц.

Электрическое поле может иметь различные типы линий в зависимости не только от полярности заряда, который способствует их образованию, но и наличию сторонних факторов. Так, при встрече противоположных полей они начинают действовать друг на друга притягательно. Искаженные линий приобретают очертания гнутых дуг. В том же случае, когда встречаются 2 одинаковых поля, то они отталкиваются в противоположные стороны.

Сфера применения

Электрическое поле обладает рядом свойств, которые нашли полезное применение. Данное явление используется при создании различного оборудования для работы в нескольких весьма важных сферах.

Использование в медицине

Воздействия электрического поля на определенные участки тела человека позволяет повышать его фактическую температуру. Это свойство нашло свое применение в медицине. Специализированные аппараты обеспечивают воздействия на необходимые участки поврежденных или больных тканей. В результате чего улучшается их кровообращение и возникает заживляющий эффект. Поле воздействует с высокой частотой, поэтому точечное влияние на температуру дает свои результаты и вполне ощутимо для больного.

Применение в химии

Данная сфера науки предусматривает использования различных чистых или смешанных материалов. В связи с этим работа с эл.полями не могла обойти эту отрасль. Компоненты смесей взаимодействуют с электрическим полем по-разному. В химии это свойство применяется для разделения жидкостей. Данный метод нашел лабораторное применение, но встречается и в промышленности, хотя и реже. К примеру, при воздействии полем осуществляется отделения в нефти загрязняющих компонентов.

Электрическое поле применяется для обработки при фильтрации воды. Оно способно отделить отдельные группы загрязняющих веществ. Такой способ обработки намного дешевле, чем использование сменных картриджей.

Электротехника

Использование электрического поля имеет весьма интересное применение в электротехнике. Так, был разработан способ беспроводной передачи электричества от источника до потребителя. До недавнего времени все разработки имели теоретический и экспериментальный характер. Уже имеется эффективная реализация технологии зарядки телефона без применения непосредственного гибкого кабеля вставляемого в USB разъем смартфона. Данный способ пока не позволяет передавать энергию на продолжительное расстояние, но он совершенствуется. Вполне возможно, что в ближайшем будущем надобность в зарядных кабелях с блоками питания отпадет полностью.

При выполнении электромонтажных и ремонтных работ применяется светодиодная индикаторная отвертка, действующая на основе схемы полевого транзистора. Помимо ряда функций, она может реагировать на электрическое поле. Благодаря этому при приближении пробника к фазному проводу индикатор начинает светиться без фактического касания к токопроводящей жиле. Он реагирует на поле исходящие от проводника даже сквозь изоляцию. Наличие электрического поля позволяет находить токопроводящие провода в стене, а также определять точки их разрыва.

Защититься от воздействия эл.поля можно при помощи металлического экрана, внутри которого его не будет. Это свойство широко применяется в электронике, чтобы исключить взаимное влияние электрических схем, которые расположены довольно близко друг к другу.

Возможности применения в будущем

Имеются и более экзотические возможности для электрического поля, которыми на сегодняшний день еще не обладает наука. Это коммуникации быстрее скорости света, телепортация физических объектов, перемещение за один миг между разомкнутыми местоположениями (червоточины). Однако для осуществления подобных планов будут нужны куда более сложные исследования и эксперименты, чем проведение экспериментов с двумя возможными исходами.

Однако наука все время развивается, открывая все новые возможности применения электр.поля. В будущем его сфера использования может значительно расшириться. Возможно, что оно найдет применение во всех значимых областях нашей жизни.

Электрическое поле

Исследование взаимодействия заряженных легких алюминиевых гильз и электрических султанов.

Каким образом осуществляется взаимодействие зарядов?

Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.

Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.

Электрическое поле неподвижных зарядов не меняется со временем и называется электростатическим полем .

Свойства электрического поля:

  1. Порождается электрическим зарядом.
  2. Обнаруживается по действию на заряд.
  3. Действует на заряд с некоторой силой.
  4. Распространяется в пространстве с конечной скоростью с=3·10 8 м/с.

Силовой характеристикой электрического поля является напряженность.

Напряженность электрического поля – векторная физическая величина, равная отношению силы , действующей на пробный точечный заряд , к этому заряду:

Направление вектора напряженности совпадает с направлением вектора кулоновской силы.

Напряженность поля не зависит от значения пробного заряда ; определяется зарядами – источниками поля, является силовой характеристикой этого поля.

Единица в СИ – Н/Кл или В/м.

Поле, напряженность которого в любой точке одинакова (), называют однородным.

Напряженность точечного электрического заряда в данной точке зависит от модуля заряда Q и от расстояния до этого заряда R.

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. В этом заключается принцип суперпозиции электрических полей .

Электрические поля изображаются графически с помощью линий напряженности .

Неоднородное электрическое поле

Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.

Однородное электрическое поле

На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.

Работа электрического поля не зависит от формы траектории и на замкнутой траектории равна нулю. Такие поля называются потенциальными. Для этих поле характерна незамкнутость линий напряженности.

Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.

Потенциал поля в данной точке, находящейся на расстоянии от заряда :

Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей

На практике используют разность потенциалов :

В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.

Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.

На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.

Связь между напряженностью электрического поля и напряжением:

Электрическое поле

Электрическое поле – феномен, который изучает классическая электродинамика. Наряду с магнитным и электромагнитным полем термин «электрическое поле» является одним из фундаментальных в современной физической науке. С использованием этого термина и понятия электрического заряда можно описать намного большее количество природных явлений, чем может показаться неосведомлённому в физике человеку.

Читайте также  Кабель для подключения звонка

Общая характеристика

Электрическим полем называется специфическая разновидность материи, формируемая микротелами, имеющими заряды. Тем не менее, это не только совокупность заряженных тел: данным термином именуется также микрополе, которое формирует в пространстве каждое заряженное тело. Именно совокупность этих микрополей и создаёт электрические поля в привычном для нас понимании.

Существование и непрерывное функционирование электрического поля обусловлено непрерывным взаимодействием частиц, имеющих заряды, в ходе которого они непосредственно сообщают электромагнитную энергию один другому посредством электрических полей, которые окружают каждое из них. Графически электрическое поле следует изображать в виде схематичной совокупности линий, в физической науке именуемых силовыми.

Силовые линии

Благодаря достижениям современной физики мы знаем, что электрические силы объясняют все химические и физические свойства веществ, от атома до животной клетки. Естествоиспытателями, которые заложили фундамент научного знания об электрическом поле, были Андре-Мари Ампер, Майкл Фарадей и Джеймс Клерк Максвелл.

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц. Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно.

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Кулоновская сила

Концепция Кулона характеризует взаимодействие между двумя зарядами, пребывающими в состоянии покоя. Она гласит: два недвижимых заряда отталкивают либо притягивают один другого с силой, которая прямо пропорциональна произведению величин зарядов, но обратна длине расстояния между этими зарядами во второй степени. Вместе с этим, сила взаимодействия пары зарядов не может измениться при присутствии третьего.

С помощью кулоновского принципа естествоиспытатель может отыскать состояние равновесия в ситуации свободного перемещения зарядов под воздействием силы другого типа, при котором заряды будут распределяться с постоянным коэффициентом. Сила Кулона предопределена третьим законом Ньютона, который утверждает, что заряды воздействуют один на другого с силами, которые равны по модулям, но противоположны по направлениям.

Суперпозиция полей

Закон Кулона и все вытекающие из него утверждения являются лишь основой для другого, более масштабного принципа – закона суперпозиции. Исходя из этого фундаментального утверждения, силы, которые действуют на заряды, каждый из которых располагается в конкретной точке объединённой системы, являют собой сумму сил, имеющих строгое направление и формируемых отдельными группами зарядов по отдельности и влияющих на заряды в конкретных точках.

В отличие от закона Кулона, принцип суперпозиции может быть недостаточным в рамках некоторых квантовых явлений в электрическом поле.

Теория близкодействия

Согласно теории близкодействия, электрические заряды передают свои взаимодействия с помощью особых вещественных частиц-посредников и производятся с конечной скоростью.

Основателями теории близкодействия в классической физике являются философ и физик Рене Декарт и естествоиспытатель Майкл Фарадей. В рамках данной концепции принято считать, что частицы, которые являются посредниками в процессе передачи взаимодействий, движутся со строго определённой скоростью, которая стремится к скорости света.

Переносчиками, или телами-посредниками, которые передают взаимодействие зарядов, являются кванты электрического поля, движущиеся со скоростью света.

Теория близкодействия

Электроемкость, конденсатор и напряженность электрического поля

Величина С, равная заряду q, который требуется сообщить проводнику с целью повышения его потенциала, называется электроёмкостью.

Электроёмкость описывает инертность заряжаемого вещества, которое может проводить электрический ток, или, другими словами, его сопротивляемость повышению потенциала.

Размер и форма проводника формируют величину электроёмкости, как и свойства диэлектрика, который разделяет проводники. В физике имеет значение один тип систем, сосредоточивающий электрическое поле в определённой месте пространства. Он носит название «конденсатор», который, в свою очередь, состоит из проводников, именуемых обкладками.

Данный тип систем являет собой конфигурацию проводников, которую составляют две плоские проводящие пластины, расположенные параллельно друг другу на маленьком расстоянии и отграниченные слоем диэлектрика.

Напряжённость электрического поля

Напряжённость электрического поля – второй по значимости термин в теории об электричестве после электрического заряда. Если естествоиспытатель знает всё хотя бы об этих двух понятиях, он сможет проводить простейшие опыты с электричеством и подкреплять их знаниями из элементарного курса физики.

Напряжённость – это сила, воздействующая на отдельный статичный заряд. Исходя из общепринятых норм можно сказать, что напряжённость электрического поля обозначается символом Е. Стоит отметить, что напряжённость является векторной величиной, а электрический заряд – скалярной.

Напряжённость электрического поля

Потенциальная энергия электрического заряда и потенциальность полей

Заряды наполняют электрическое поле. Они двигаются по некоторым замкнутым траекториям. Величины работы их сил равняются нулю, и потому эти силы (или силовые поля) именуют потенциальными. Считается, что некоторые виды электрических полей, в частности, электростатическое поле, обладает свойством потенциальности изначально. Это доказанная теория, и она не требует новых исследований.

Потенциальная энергия

Благодаря свойству потенциальности физики могут судить о том, что потенциальная энергия присуща каждому электрическому заряду в конкретном поле. Наглядно проиллюстрировать этот принцип можно так: в пространстве имеется конкретная точка, в которую может быть перемещён конкретный заряд, величина потенциальной энергии которого будет равна нулю.

Силовые линии

Из закона потенциальности полей вытекает концепция его силовых линий. В действительности подобных объектов в вещественном виде не существует. Это графический инструмент, который позволяет изобразить электрическое поле для визуального схематического наблюдения и исследования. Через представление густоты и числа линий можно проиллюстрировать направление напряжённости поля, а также его величину.

Изображение силового поля

Электрический диполь

Данный термин обозначает элементарную совокупность точечных зарядов, которые имеют системные признаки. Диполем называется сумма зарядов, противозначных, но равных по величине, и сдвинутых один от другого на определённое расстояние.

Диполи бывают разные, но наибольшее внимание физическая наука уделяет точечным диполям. Так называются диполи, которые характеризуются пренебрежимо маленьким расстоянием от отрицательного заряда до положительного. Если в теории совокупность зарядов разделить на множество частей, её можно будет рассматривать как систему электрических диполей.

Электрический дипольный момент

Краткая история изучения электрического поля

Считается, что инженер и физик Шарль Кулон стал первым исследователем взаимодействия статичных зарядов. Именно он вывел принцип их взаимодействия. Фундаментом исследований Кулона стала теория гравитационного взаимодействия Исаака Ньютона.

Ганс Эрстед стал учёным, открывшим магнитные свойства электрического тока и поля, а благодаря Джеймсу Максвеллу мы знаем, что электрическое поле не может существовать без магнитного, которое и индуцирует его. Также Максвелл утвердил концепцию близкодействия электромагнитных взаимодействий.

Ганс Эрстед и Джеймс Максвелл

Тем не менее, электрическое поле стало объектом человеческих исследований задолго до последних веков. Ещё Фалес Милетский в 7 веке до нашей эры исследовал природу статического электричества.

В конце 19 века Джозефом Томсоном был открыт электрон – «живой» образец носителя электричества. Спустя годы Эрнст Резерфорд доказал место в структуре атомов, на котором располагаются электроны.

Воздействие электрического поля на жизнь и здоровье человека

Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.

Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.

Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.

Еще рекомендую посмотреть лекцию профессора на тему «Электрическое поле»:

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий