Почему начались просадки напряжения на производстве?

Почему начались просадки напряжения на производстве?

Устройства защиты от провалов напряжения

Рассмотрим различные системы, защищающие промышленное производство от провалов напряжения (маховик, статический источник бесперебойного питания (ИБП), динамический компенсатор искажений напряжения, статический компенсатор (СТАТКОМ), параллельно соединенный СД, повышающий преобразователь, активный фильтр и бестрансформаторный последовательный усилитель).

Провалы напряжения являются одним из наиболее дорогостоящих явлений в промышленности. Самый легкий способ защитить чувствительные процессы от всех провалов — это установка ИБП . Однако из-за большой стоимости их закупки и обслуживания ИБП устанавливают только на основных структурных объектах, в местах, где повреждения, вызванные проблемами с электропитанием, могут причинить значительные повреждения, например в больницах, при производстве компьютеров, в финансовых учреждениях.

При решении вопроса об установке защитного оборудования должен быть проведен технико-экономический расчет, показывающий обоснованность установки ИБП для того или иного производственного процесса.

Проблема защиты электродвигателей с различными скоростями в промышленном производстве от провалов напряжения на данный момент решена. Из-за широкого разнообразия торговых марок таких систем найти оптимальное технико-экономическое решение этой проблемы не очень просто.

Типы корректирующего оборудования

Маховик вместе с двигатель-генератором (Д-Г) может защитить критические процессы нарушения производства от всех падений напряжения в энергосистеме С. Когда происходят падения напряжения, то снижение напряжения у нагрузки замедляется маховиком. Различные схемы соединения маховика с двигатель-генератором похожи на ту, которая изображена на 1.

Рис. 1. Схема использования маховика для компенсации провалов напряжения

Основные компоненты независимого статического ИБП представлены на рис. 2, батареи (конденсаторы) которого запасают энергию только на защиту от провалов напряжения на короткое время. Если произошел провал напряжения, нагрузка питается от батареи через преобразователь напряжения постоянного — переменного тока.

Рис. 2. Схема использования ИБП для компенсации провалов напряжения

Динамический компенсатор искажений напряжения в течение провала напряжения остается подсоединенным к электрической сети 1 через трансформатор 2 и определяет отсутствующую часть напряжения (рис. 3). Он добавляет эту отсутствующую часть напряжения через первичную 4 и вторичную 3 обмотки автотрансформатора, соединенного последовательно с нагрузкой 7. В зависимости от назначения энергия для питания нагрузки 7 через преобразователь напряжения 5 в течение провала напряжения может забираться из сети или от дополнительного источника энергии (в основном от конденсаторов в).

Рассмотрим две модификации различных производителей. Первая (далее ДКИН-1) не содержит источников энергии и постоянно подключена. Этот вариант экономически целесообразен для повышения напряжения до 50 %. Существует модификация устройства ДКИН со способностью к подъему напряжения на 30 %. Считается, что начиная с этой модификации устройства ДКИН (30 %) целесообразно их применение в производстве.

Рис. 3. Схема использования ДКИН для компенсации провалов напряжения

Вторая модификация (ДКИН-2) содержит источник энергии, рассчитанный на большую нагрузку. Двухмегаваттное устройство способно поднять напряжение нагрузки мощностью 4 МВт на 50 % или мощностью 8 МВт на 23 %. В отличие от большинства других устройств, мощность источника энергии способна выдержать длительные провалы.

Статический компенсатор (СТАТКОМ) — это устройство компенсации провалов напряжения, подсоединенное параллельно нагрузке (рис. 4). Устройство СТАТКОМ может снижать провалы напряжения путем изменения реактивной нагрузки в узле подключения.

Способность снижать провалы может быть расширена путем добавления дополнительного источника энергии, такого как сверхпроводящий магнитный источник энергии. Хотя компенсаторы СТАТКОМ (рис. 4) способны поглощать и возвращать реактивную мощность Q статком их применение обычно ограничивается статической компенсацией по причинам экономического характера.

Система СТАТКОМ в режиме снижения напряжения переходит в режим постоянного источника тока. Напряжение на выводах конденсатора может поддерживаться постоянным.

Рис. 4. Статический компенсатор

Параллельно подсоединенный синхронный двигатель (СД) несколько напоминает СТАТКОМ, но не содержит силовой электроники (рис. 5). Способность синхронного двигателя обеспечить большую реактивную нагрузку позволяет такой системе восполнять провалы напряжения глубиной до 60 % на протяжении 6 с. Вместе с этим маленький маховик защищает нагрузку против полного отключения электроэнергии на время 100 мс.

Рис. 5. Параллельно подсоединенный СД и маховик: 1 — энергосистема; 2 — трансформатор; 3 — выключатель

Повышающий конвертор — это преобразователь постоянного тока, повышающий напряжение шин постоянного напряжения (например, двигателя переменной частоты) до номинального уровня (рис. 6).

Наибольший провал напряжения, который может быть компенсирован, зависит от номинального тока повышающего конвертора. Повышающий конвертор начинает работать, как только провал напряжения будет зафиксирован на шинах постоянного тока прибора. Наряду со способностью обеспечить компенсацию симметричного провала напряжения вплоть до 50 % повышающий конвертор имеет возможность компенсировать глубокие несимметричные провалы, такие как полный выход из строя одной из фаз. Для защиты против полного отключения электроэнергии повышающий конвертор может быть дополнен батареями.

Активный фильтр ( рис. 7) — это преобразователь, который работает как выпрямитель при использовании IGBT-тиристоров вместо диодов.

Активный фильтр может постоянно поддерживать напряжение в течение всего провала напряжения. Номинальный ток активного фильтра определяет максимальное значение корректировки провала напряжения.

Рис. 7. Активный фильтр

В случае возникновения провала напряжения бестрансформаторная схема компенсации провала напряжения (рис. открывается и нагрузка питается через инвертор. Энергия на шинах постоянного напряжения инвертора поддерживается двумя заряженными последовательно соединенными конденсаторами.

Рис. 8. Бестрансформаторная последовательная компенсация провала напряжения

Для остаточного напряжения равного 50 % может быть обеспечен номинальный уровень напряжения. В данном устройстве необязательные источники питания (конденсаторы) могут смягчить полное отключение электроэнергии на ограниченный период времени. Устройство обеспечивает возможность восстановления напряжения и при несимметричных провалах напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое провалы напряжения в сети и как с ним бороться?

Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.

Что такое провал напряжения?

В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.

Осцилограмма провала напряжения

Характеризующие показатели

Для описания понижения амплитуды напряжения используются следующие показатели:

δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном — Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;

∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк — tн

Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.

Основные показатели провала напряжения

Приведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.

Причины появления провалов

Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:

  1. Пусковые токи.
  2. Колебания напряжения при коротком замыкании.
  3. Внезапное значительное увеличение нагрузки.
  4. Другие причины сетевого происхождения.

Рассмотрим подробно каждый из перечисленных факторов.

Токи включения

Образование токов включения, например, при старте мощных электродвигателей или другого устройства — самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.

Образование провала напряжения при запуске электродвигателя

Обозначения:

  • Т1 – Понижающий трансформатор.
  • RZ – Полное сопротивление на вводе питания.
  • RZ1-RZ3 — Полные сопротивления цепей потребителей.
  • М – мощный асинхронный двигатель.

С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.

Короткие замыкания

Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.

КЗ в сетях с низким напряжением.

Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.

Образование провала вследствие КЗ в цепи потребителя 2

Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.

На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.

КЗ в сетях с напряжением среднего класса.

Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:

  • Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
  • Пробои в местах соединений.
  • Старение изоляционного покрытия.
  • Воздействие природных и техногенных факторов.

При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.

КЗ в высоковольтных линиях.

В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.

Большие нагрузки

При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.

Провалы сетевого происхождения

Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:

  • топология цепи;
  • величина полного сопротивления проблемного участка;
  • текущая мощность нагрузки и источника электрической энергии (генератора).

Для более детального представления, рассмотрим пример, представленный на рисунке ниже.

Провалы сетевого происхождения

Допустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.

Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.

Читайте также  Пожарные щиты первичных средств пожаротушения общие требования

Допустимые провалы напряжения по ГОСТ

Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:

  1. Величина остаточного напряжения.
  2. Длительность.

Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.

Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.

Влияние провалов на работу электрооборудования

Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:

  • Понижению интенсивности светового потока, производимого источниками с нитью накала.
  • Снижению чувствительности радио- и телеприемников.
  • Нестабильности работы рентгеновских установок.
  • Ложным срабатываниям электронных систем управления.
  • Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
  • Изменению характеристик преобразователей напряжения.
  • Падение мощности электродвигателей, что приводит к электропотерям и износу.

Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.

Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.

Финансовая сторона вопроса

Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:

  • Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
  • Ремонт вышедшего из строя оборудования.
  • Потери сырья и т.д.

Как бороться с провалами напряжения?

Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.

Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.

Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.

Советуем ознакомиться и прочитать:

Причины низкого напряжения в сети

Причины понижения напряжения в сети могут быть различные. В этой статье мы остановимся на основных причинах, приводящих к низкому напряжению.

Основные причины снижения напряжения в сети

Всегда ли в нашей сети — 220? Вопрос, конечно, риторический, очень часто напряжение в сети не соответствует нормативам и является пониженным или повышенным.

Приводим список основных причин низкого напряжения:

  • низкое напряжение в линии ЛЭП
  • недостаточная мощность трансформатора, установленного на подстанции
  • перекос напряжения по фазам на линии от трансформатора до дома
  • проблемы в распределительном щитке, малое сечение проводов в разводке.

Подробнее о причинах низкого напряжения и методах решения данной проблемы

Падение напряжения в линии ЛЭП

Одной из глобальных причин понижения напряжения является недостаточная мощность электрогенерации и электротрансформации в регионе. Недостаточное финансирование электрической отрасли с одной стороны и бурный рост потребления электроэнергии в последние годы с другой стороны приводит к проблемам с качеством электроснабжения.

Повлиять на решение данной проблемы мы практически не можем, единственное решение в этой ситуации — покупка и установка повышающего стабилизатора напряжения.

Низкая мощность распределительного трансформатора или неправильная его настройка

Часто бывает так. К одному трансформатору было подключено определенное количество потребителей и проблем с качеством электроэнергии не было. Потом к этому же трансформатору или подстанции подключаются еще новые дома, и мощность его оказывается недостаточной, это приводит к понижению напряжения во всей подключенной сети. Такое явление часто наблюдается в дачных поселках, и напряжение в 180, 170, 160 и даже 150 Вольт там не редкость.

Какие есть методы решения?. Наиболее правильный — замена трансформатора на более мощный. Но для этого нужно иметь общее решение всех потребителей и финансовые возможности. Индивидуально решить проблему в этом случае можно путем установки повышающих стабилизаторов напряжения на весь дом или нужную группу приборов.

Перекос фаз в распределительной сети, вызывающий снижение напряжения, и методы решения

Причиной снижения напряжения на входе в дом может быть неравномерное распределение потребителей в распределительной сети или «перекос фаз». Как правило, такое явление наблюдается в сельской местности, в дачных поселках и частном секторе. Дома в таких сетях подключаются к электросети по мере строительства новых объектов индивидуально. Часто при этом подключение идет по принципу «так удобно монтеру» или «этот провод ближе». В результате на одной «фазе» или одном «плече» сети потребителей оказывается больше, чем на других. Напряжение в этой части электросети будет ниже.

Исправить ситуацию путем повышения значения напряжения на питающем трансформаторе не получится, так как этот приведет к повышенному (или опасно высокому) значению напряжения на других участках этой электросети. Правильное решение — устранить неравномерность распределения потребителей, переключится на питание от другой фазы сети. Но часто это бывает не возможно физически. Второй вариант решения проблемы — установка стабилизатора напряжения на входе в дом.

Проблемы в домашней сети, приводящие к понижению напряжения и методы их устранения

Первое, что нужно сделать, если у Вас низкое напряжение в розетке, — это выяснить является ли проблема внутренней или внешней.

Первое. Самое простое — узнать, есть ли проблемы с электропитанием у соседей. Второе. Отключить автоматы в распределительном щите и измерить напряжение на входе в доме. Если напряжение низкое — то проблема во внешней сети. Если напряжение на входе в дом нормальное, то проблема в доме.

Приводим список частых проблем в электросети дома или квартиры:

  • снижение напряжения может быть вызвано плохими контактами на входе в распределительный щит или плохими контактами в самом распределительном щите;
  • снижение напряжения может быть вызвано плохими контактами в комнатных распределительных коробах и на самих розетках;
  • снижение напряжения может быть вызвано неправильным выбором сечения провода в разводке.

Если выявить точную причину самостоятельно не получилось, следует обратиться за помощью к профессиональному электрику.

Как поднять напряжение с помощью стабилизаторов

Существует два основных способа решить проблему низкого напряжения.

Первый способ — установка большого мощного стабилизатора на входе в дом. Такой стабилизатор должен иметь большую мощность, большой диапазон входного напряжения и высокую надежность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 3,5 кВт до 12 кВт.

На следующем видео представлены возможности стабилизатора SKAT ST-12345.

Второй способ — установка локальных стабилизаторов для питания отдельных электроприборов. Такие стабилизаторы должны иметь достаточную мощность, большой диапазон входного напряжения, компактный размер и высокую надежность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 1,5 кВт до 3 кВт.

На следующем видео представлены возможности стабилизатора SKAT ST-2525.

Выводы: для решения проблемы низкого напряжения в доме необходимо установить причины этого явления, попытаться устранить проблемы в сети, использовать стабилизаторы напряжения.

Источник: Компания «Бастион»

Следите за нами в Life-режиме в Instagram
Деловые поездки, офисная жизнь, актуальные разработки в мире электротехники

Почему начались просадки напряжения на производстве?

Группа: Участники форума
Сообщений: 1304
Регистрация: 7.12.2009
Из: Москва
Пользователь №: 41921

Ситуация следующая.
Насосно-повысительная станция повышения давления состоит из 3-х насосов (каждый со своим частотником) насосы 1-фазные 0,75квт. каждый, +питание самого шкафа однофазное 100вт..
Питание шкафа осуществляется 3-мя фазами, питание насосов идет со шкафа, насосы разнесены по разным фазам.

Еженедельно происходят просадки напряжения,обычно просадки до 100-150В, (моргнуло и все) но иногда и до 0В длительностью до 1-2 сек.

Контроллер станции боле-менее перезагружается, но частотники на насосах уходят в глухую аварию и перезапускаются только отключением и включением питания.

Есть желание защитить линию питающую станцию. Но тут засада.
1. ИБП с трехфазным выходом -дорогой до безобразия.
2.Ставить 3 однофазных ИБП по 1-му кВт каждый и запитывать от него раздельно фазы подающие напряжение на шкаф — че-то нигде я такого не встречал.
3. Ставить стабилизатор трехфазный . я посмотрел у них в среднем скорость стабилизации 10-20 В/сек, т.е во время просадки на доли секунды он даже моргнуть глазом не успеет, а не то-что поднять напряжение до нужного уровня. Или я не прав?

кто, что посоветует?

Сообщение отредактировал l-nikolaev — 8.4.2020, 16:09

сам себе Sapiens

Группа: Участники форума
Сообщений: 10007
Регистрация: 21.5.2005
Из: г. Владимир
Пользователь №: 797

Еженедельно происходят просадки напряжения,обычно просадки до 100-150В, (моргнуло и все) но иногда и до 0В длительностью до 1-2 сек.

Контроллер станции боле-менее перезагружается, но частотники на насосах уходят в глухую аварию и перезапускаются только отключением и включением питания.

Группа: Участники форума
Сообщений: 1304
Регистрация: 7.12.2009
Из: Москва
Пользователь №: 41921

Да, если ничего не получится-так и сделаю. Но, не я один-же с такой проблемой, как-то решают.

Походу -не получится. я тут разул глаза (как нормальный инженер посмотрел документацию): в шкафу они еще контролируют 3 фазы (фото схем прилагаю). т.е. на входе стоит транс который контролирует перекос фазы А и В (вход 380/выход 220) и эти 220 он выдает на питание контроллера.
Если я поставлю 3 ИБП,то напряжение с них уже не будет 3-мя разными фазами одной сети, и вероятнее всего -транс выдаст аварию.
че-то фотки не прикрепляются.

Группа: Участники форума
Сообщений: 583
Регистрация: 15.10.2006
Пользователь №: 4319

В случае наличия хотя бы одной трёхфазной нагрузки или нагрузки с питанием линейным напряжением ИБП должен быть только трёхфазный. Такие существуют, но цена.

Но вообще-то бороться надо не со следствием, а с причиной. Если фазное падает ниже 198 вольт или линейное ниже 340 вольт — разбираться с энергоснабжением. ГОСТ 13109 никто не отменял, требования к качеству электроэнергии там прописаны чётко: допустимые отклонения от номинала +/-5 % нормальные и +/-10 % максимальные.

Группа: Участники форума
Сообщений: 1304
Регистрация: 7.12.2009
Из: Москва
Пользователь №: 41921

В случае наличия хотя бы одной трёхфазной нагрузки или нагрузки с питанием линейным напряжением ИБП должен быть только трёхфазный. Такие существуют, но цена.

Читайте также  Сбор, хранение и потреблениевинограда

Но вообще-то бороться надо не со следствием, а с причиной. Если фазное падает ниже 198 вольт или линейное ниже 340 вольт — разбираться с энергоснабжением. ГОСТ 13109 никто не отменял, требования к качеству электроэнергии там прописаны чётко: допустимые отклонения от номинала +/-5 % нормальные и +/-10 % максимальные.

да. цена такая, что мама не горюй.
Я, вот думаю, может в Грундфосс обратиться, что-бы они этот шкаф на однофазный переделали.. ну будет тыщ 10-15 стоить (может быть).. и все двигатели на одну фазу повесить. Однофазный ИБП на 2,5 кВт вполне вменяемых денег стОит.

Хороший совет, только немолод я и нет в планах моих погибнуть не дожив до пенсии в яростных спорах с МОЭСК ЦАО г. Москвы в спорах и доказываниях, что у них напряжение прыгает. и самое обидное будет, что смерть моя героическая не приведет к устранению этой проблемы, а стало-быть и геройствовать незачем.

Группа: Участники форума
Сообщений: 583
Регистрация: 15.10.2006
Пользователь №: 4319

Почему такое неверие?
И ты не должен ничего доказывать. Есть процедура замера качества э/э, надо только её выполнить. И спорить ни с кем не надо. У нас на Украине есть положение, что поставщик некачественной э/э отвечает за нанесённый ущерб — сгоревшее оборудование, не включившиеся пожарные насосы и т.д., и ещё потребитель оплачивает э/э с отклонением от ГОСТ 13109 не по полной стоимости. Что-то подобное есть и РФ. Вот и письмо им под входящий номер — «наши измерения такие-то, фиксируем (частый) выход параметров качества э/э за пределы ГОСТ, начиная с даты ХХ оплачиваем э/э по сниженным расценкам в соответствии с _____; также на вас ответственность за все ситуации, связанные с э/э с показателями качества ниже ГОСТ».

Да, и на всякий случай проверьте у себя. Если проваливается две фазы, а на третьей напряжение повышается — ищите проблемы с нейтралью. Нормальные линейные напряжения при неправильных фазных — тоже самое.

Группа: Участники форума
Сообщений: 1304
Регистрация: 7.12.2009
Из: Москва
Пользователь №: 41921

Почему такое неверие?
И ты не должен ничего доказывать. Есть процедура замера качества э/э, надо только её выполнить. И спорить ни с кем не надо. У нас на Украине есть положение, что поставщик некачественной э/э отвечает за нанесённый ущерб — сгоревшее оборудование, не включившиеся пожарные насосы и т.д., и ещё потребитель оплачивает э/э с отклонением от ГОСТ 13109 не по полной стоимости. Что-то подобное есть и РФ. Вот и письмо им под входящий номер — «наши измерения такие-то, фиксируем (частый) выход параметров качества э/э за пределы ГОСТ, начиная с даты ХХ оплачиваем э/э по сниженным расценкам в соответствии с _____; также на вас ответственность за все ситуации, связанные с э/э с показателями качества ниже ГОСТ».

Да, и на всякий случай проверьте у себя. Если проваливается две фазы, а на третьей напряжение повышается — ищите проблемы с нейтралью. Нормальные линейные напряжения при неправильных фазных — тоже самое.

Если качество ЭЭ стабильно плохое, то это доказывается, и достаточно несложно.
С просадками -дело другое. Более чем очевидно, что данные просадки происходят по причине срабатывающего коммутационного оборудования в сетях МОЭСК (прыгает или 1 или 2 или 3 фазы). МОЭСК конечно говорит , что у них все нормально, в крайнем случае говорит, что просадка была, но в пределах допустимого.

Для того, что-бы ДОКАЗАТЬ что была просадка за гранью разумного- надо иметь боле-менее сертифицированное оборудование. аргументы типа «все это видели и вот 10 подписей которые это подтверждают) -не для судебных разбирательств. А, вопрос доказывания ущерба от просадок -это вообще глухой номер. это надо доказать, что прибор вышел из строя ИМЕННО В РЕЗУЛЬТАТЕ ПРОСАДКИ, а это -тот еще квест.

Ну, ладно, это собственно оффтоп.
Может тиристорный трансформатор 3-х фазный поставить? бюджет правда под 50тр. Гхм.

Опасность провалов напряжения в электрической сети: происхождение и способы борьбы с ними

В электрической сети нередко возникают разные проблемы, в том числе и провал напряжения. Такая ошибка можно повлиять на работу приборов потребления энергии, вызывать сбои и ошибки в процессе функционирования самих устройств.

Прерывание тоже может встретиться в сети, но провалы напряжения происходят чаще.

Сегодня рассмотрим, какие неприятности может повлечь за собой возникновение этого явления, из-за чего они случаются и есть ли средства защиты от данной проблемы.

Определение понятия

Уменьшение напряжения — это явление, при котором в определённой точке или участке электросети напряжение резко идёт на спад. После спада восстановление значения к близким, необходимым значениям происходит за определённый, короткий период времени, обычно занимающий не больше 20-30 секунд.

Напряжение может быть номинальных значений, а может иметь значение при возникновении явления. Отношения между этими значениями характеризует глубина и длительность, которые являются ключевыми параметрами в характеристике данного явления.

Длительность в провалах — это промежуток времени между началом и моментом, когда напряжение восстановилось до необходимого номинального значения.

Значения глубин может доходить от десяти до ста процентов. Время длительности тоже может различаться, но обычно не превышает нескольких десятков секунд.

Существует и характеристика, выражаемая в том, насколько часто уменьшения напряжения появляются в сети. Это вспомогательный параметр, который характеризуется тем, сколько раз это случится в сети за определённый временной период.

Почему возникают

Провалы напряжения часто случаются из-за короткого замыкания в узлах нагрузки, где напряжение может быть высоким, средним или достигать 1000 Вольт.

При этом возникают стихийно, никакого нормирования у данного явления нет. Тем не менее, стоить уделять внимание тому, насколько часто они случаются, какими характеристиками они обладают.

Делать это нужно для нахождения правильного ИБП, то есть источника бесперебойного питания. Это поможет сохранить работу устройств, которые от частых появлений напряжения могут пострадать.

При этом среди устройств, наиболее чутко реагирующих на явление, встречаются серверы, разная компьютерная техника и иные чувствительные устройства.

Большие нагрузки

Одна из наиболее частых причин появления провалов заключается в возникновении больших нагрузок в электросети. При подключении к сети потребителей энергии, которым необходима большая мощность для работы, может возникнуть явление провала.

В этом случае подключение прибора может вызвать пусковые токи, которые будет выше номинального тока. Например, значение номинального тока может быть увеличено в пять раз при включении электрического двигателя или другого мощного прибора.

Другой частой причиной провалов является неправильная проектировка электросети и неверный подбор устройств переключения в разном электрооборудовании.

Сегодня сеть можно оборудовать защитными элементами, благодаря которым сеть будет обесточена, если пусковой ток превысит допустимые значения на долгое время. При этом пусковые токи не повлияют на работу устройств.

Все описанные проблемы можно решить с помощью преобразователя частоты. Благодаря данному устройству значения провалов и их воздействие на приборы будут снижены с помощью распределения нагрузок.

Другим способом решить проблему мощно с помощью элементов, благодаря которым сопротивление в цепях уменьшается, однако это не самый экономичный вариант решения проблемы возникновения провалов.

Поскольку потребители энергии больше всего страдают от провалов, они могут быть безвозвратно повреждены (к примеру, двигатели в устройствах могут сгорать).

В случае, если Вам не нравятся описанные выше способы решения проблемы провалов или они Вам не подходят, предлагаем воспользоваться следующими вариантами:

  • Используйте стабилизатор напряжения для вашей электрической сети. Стабилизаторы являются надёжным источником борьбы с провалами.
  • Электронные регуляторы тоже могут стать эффективным помощником по борьбе с описываемым явлением.
  • Динамический восстановитель напряжения являются хорошим способом устранения провала напряжения в сети.

Обратите внимание, что неважно, к какому классу напряжения относится ваша сеть. Никакая сеть не защищена от возникновения провалов напряжения, если она не оборудована дополнительными элементами защиты.

Появление от электросети

Повреждения могут распределяться в электросети. Это довольно сложный процесс, поскольку воздействие повреждений одного участка на другие зависит от разных моментов. Среди причин выделяем:

  1. Величину нагрузки в определённых местах соединений.
  2. Значение величины сопротивления в сети.

Именно от работы защитных систем обнаружения, надёжности и оперативности её работы зависит, насколько долго будет длиться явление провала напряжения. Как правило, на это уходит меньше одной секунды.

Иногда повреждение возникает из-за крупных механических повреждений на линии (упавшей на провода ветки или ветра, разорвавшего провода). От параметров, элементов защиты и самого повреждения зависит, насколько быстро может быть решена проблема.

Изолированная нейтраль на линии означает, что замыкание на одну фазу на землю может быть устранено за несколько часов (в зависимости от того, как быстро специалисты из служб обнаружат участок с проблемой). При замыкании на две фазы сеть может быть отключена с помощью защитных элементов менее чем за секунду.

Автоматические элементы защиты могут целиком отключать определённые участки сети. Это помогает сохранить в целости приборы потребления энергии, связанные с этим участком. Энергия не будет проходить к ним до тех пор, пока специалисты из службы снабжения энергии не решат проблему на линии.

Существуют и элементы для автоматического включения, которые помогают включению в сети, но при этом могут образовать провал напряжения.

Данное устройство сработает для восстановления питания при срабатывании автоматических защитных элементов, при этом время срабатывания будет зависеть от конкретных условий прибора и сети. Иногда срабатывание происходит меньше, чем за секунду, а иногда из секунды времени.

Когда повреждения на участке устранены, оборудование снова запускается, после чего напряжение стабилизируется.

В случае, если при включении повреждение так и не было устранено, элементы защиты за короткий промежуток времени снова отключать электричество от сети в проблемном участке. Чтобы избежать аварийной ситуации, обычно всегда необходимо убедиться, что повреждение было найдено и устранено.

Если повреждение при повторном включении не было исправлено, элементы защиты снова нужно включить. От программы автоматических повторных выключателей зависит, сколько раз будет повторяться включение.

При этом нужно понимать, что каждая новая попытка включения электричества в сеть будет способствовать возникновению провалов напряжения. Это подразумевает, что на некоторых пользователей придётся неограниченное количество провалов напряжения.

Варианты обеспечения безопасности

Конечно, существуют способы обезопасить сеть и приборы от провалов напряжения. Мы уже упоминали ИБП, то есть источник бесперебойного питания, которые поможет обезопасить приборы и сеть с небольшими нагрузками.

Промышленные объекты тоже часто используют ИБП, поскольку именно этот элемент защиты может сохранить информацию и правильно свернуть технологические процессы при возникновении аварии.

Защитить сеть с мощными нагрузками лучше всего с использованием специальных систем, благодаря которым напряжение может быть динамически восстановлено за короткий срок.

Благодаря специализированным системам можно достигать необходимых значений напряжения при появлении проблем в сети, но работают такие системы, как правило, не очень долго. При появлении длительных провалов данные системы не помогут.

Это основные моменты, касающиеся явления провалов напряжения. Провалы могут появиться в любой сети, независимо от напряжения в ней. По этой причине лучше всего позаботиться о включении в сеть защитных элементов.

Обратите внимание, что компьютерная техника является наиболее чувствительной к возникновению в сети провалов напряжения.

Читайте также  Стимуляция половых функций коров иповышение оплодотворяемости

В случае, если Вы знаете о появлении провалов в вашей сети, лучше всего защитить компьютер одним из способов, о которых мы рассказали в статье.

12 причин появления скачков в сети

Анализ различных причин возникновения скачков напряжения в сети. Рассматриваются аварийные и технологические причины, приводящие к резким скачкам напряжения

Скачки напряжения. Определения и понятия

Скачки напряжения

Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.

Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.

Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.

Отклонение напряжения

«Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Колебание напряжения

«Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

Перенапряжение

«Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.

Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».

С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.

Причины появления скачков напряжения

Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.

1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов

Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.

2 причина появления «скачка напряжения» — нестабильность в работе трансформаторной подстанции

Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.

3 причина появления «скачков напряжения» — аварии в передающих электрических сетях

Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.

4 причина появления «скачков напряжения» — обрыв «нуля»

Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.

5 причина появления «скачков напряжения» — ослабление заземления

Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.

6 причина появления «скачков напряжения» — значительная перегрузка сети

Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.

7 причина появления «скачков напряжения» — плохое качество монтажа и материалов электрической домовой разводки

Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков напряжения не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.

8 причина появления «скачков напряжения» — включение промышленного оборудования в смежной сети электропередач

Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «вернуться» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.

9 причина появления «скачков напряжения» — «мерцающий эффект»

Скачки напряжения могут иметь систематический характер. Возможной причиной таких скачков может быть некорректная работа регулирующего оборудования в электрических приборах. Регуляторы электрических приборов должны осуществлять включение и выключение прибора или его части для контроля определенных параметров. Пример самого простого регулятора — это регулятор температуры отопительного прибора или электрического утюга. При достижении нужной температуры элемента прибор должен отключится. Часто бывает, что регулятор срабатывает очень часто, это приводит к износу контактов коммутирующего устройства. Изношенные контакты начинают порождать скачки тока. В этом случае можно видеть на графике напряжения скачки периодического характера.

10 причина появления «скачков напряжения» — попадание молнии в линии передач

Самая эффектная и самая мощная причина, порождающая гигантские перенапряжения и скачки — это попадание молнии в линии электропередач. Я думаю, каждый человек видел, как молния попадает в линии электропередач и в металлические опоры линий передач. Нужно сказать, что история создания электрических приборов тесно связана с молнией. Первые опыты по использованию электричества проводились с энергией молнии. Современные системы электропередач имеют защиту от молнии, однако, полностью избежать появления больших импульсов в сети не удается. Мощные разряды молний порождают большое перенапряжение, которое распространяется вдоль линии передач и может дойти до конечного потребителя. И хотя импульс от удара молнии длиться сотые или тысячные доли секунды, но этой бешеной энергии в тысячи вольт достаточно для нанесения большого ущерба электрооборудованию.

11 причина появления «скачков напряжения» — попадание высокого напряжения с линий трамвайных и троллейбусных контактных линий

Ситуация, когда происходит обрыв контактной трамвайной или троллейбусной линии электропередач, случается в городе несколько раз в месяц. Причиной может быть сильный порыв ветра или выполнение строительных работ, падение дерева на линию передач. При этом один из проводов контактной линии может зацепить или полностью упасть на линии обычных электропередач. В этом случае в сети можно наблюдать скачки напряжения в сотни вольт. Бывают случаи, когда такая авария приводит к сгоранию всех электрических приборов в нескольких домах рядом с аварией. При этом, если не происходит защитного отключения, то перенапряжение может вызвать даже возгорание приборов.

12 причина появления «скачков напряжения» — проведение сварочных работ

Проведение сварочных работ с помощью электрической сварки всегда приводит к появлению больших скачков напряжения во всей сети. И если в городе такое явление редко, то в деревнях и поселках встречается с завидной постоянностью. Кто-то варит забор, кто-то выбрасывает холодильник, сгоревший от большого скачка напряжения. При этом часто сварочные аппараты подключают прямо на вход проводов в дом, то есть минуя все защиты. Каждая дуга сварки в этом случае порождает большой скачок параметров тока в сети.

Таким образом, можно выделить несколько групп причин порождения скачков напряжения:

  • скачки напряжения порождаются по причине плохого качества оборудования и монтажа электрооборудования и электрической разводки;
  • скачки напряжения появляются по причине включения или выключения мощного оборудования или мощных электрических приборов;
  • скачок напряжения обусловлен природными факторами, ударами молнии, сильным ветром, наводнением;
  • скачки напряжения порождены нарушениями правил эксплуатации приборов и оборудования или недостаточного объема проведенных профилактических работ;
  • скачок электрического напряжения обусловлен нарушениями при проведении строительных и сварочных работ;
  • скачок напряжения появился из-за аварий техногенного характера.

Как бороться со скачками напряжения в сети

Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.

Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий