Почему нагревается блок питания светильника при работе теплого пола?

Почему нагревается блок питания светильника при работе теплого пола?

Проблема перегрева осветительных светодиодов и пути ее решения

Если сравнивать со стремительно уходящими в прошлое источниками света, то светодиодные источники имеют всего один, но крайне серьезный изъян. Их долговечность и надежность в значительной степени зависят от эффективности отвода тепла от излучающих свет компонентов. Поэтому схема защиты светодиода от перегрева — важная составная часть любой качественной светодиодной системы освещения.

Среднестатистический осветительный светодиод десятикратно превосходит по энергоэффективности (экономичности) традиционную лампочку с нитью накаливания. Однако, если светодиод не установить на радиатор достаточной площади, то он скорее всего быстро выйдет из строя. Принято считать, не вдаваясь в подробности, что более эффективные осветительные светодиоды нуждаются в более эффективном отводе тепла чем обычные.

Давайте, тем не менее, рассмотрим проблему более глубоко. Оценим два фонаря: первый — галогенный, второй — светодиодный. И уже после — обратим внимание на способы сохранения долговечности светодиодов и продления жизни их драйверам. Дело в том, что защитная часть светодиодной системы освещения должна обеспечить безопасное функционирование как светодиодам, так и схемам — драйверам.

К примеру у нас имеется два фонаря. Оба устройства дают по 10 Вт световой мощности. Разница лишь в том, что прожектор на галогенной лампе требует 100 Вт электрической мощности, а светодиод — всего 30 Вт.

Мы знаем, что светодиоды эффективнее по производимому свету примерно в 10 раз, но в реальности они крайне чувствительны к высоким температурам, и для них поэтому очень важен температурный режим, при котором происходит преобразование энергии электрического тока — в свет.

Для светильника с галогенной лампой рабочая температура даже в +400 °C является безопасной нормой, в то время как для светодиодов температура кристалла в +115 °C уже критически опасна, а максимальная температура корпуса диода составляет всего +90 °C. Поэтому светодиоду нельзя давать перегреваться, и на то есть несколько причин.

С повышением температуры светоизлучающего перехода, световая эффективность светодиода понижается, и это зависит как от конструкции светодиода, так и от состояния окружающей среды. К тому же светодиоды в принципе отличаются отрицательным температурным коэффициентом прямого падения напряжения на переходе. Это значит, что с увеличением температуры перехода, прямое падение напряжения на нем уменьшается. Обычно данный коэффициент варьируется от -3 до -6 мВ/К.

Таким образом, если при 25 °C прямое падение напряжения на светодиоде составляет 3,3 В, то при 75 °C оно будет уже 3 или менее вольт. И если драйвер светодиода не уменьшает по мере роста температуры напряжение на всех светодиодах сборки, то в один прекрасный момент ток станет поддерживаться неадекватно высоким, что приведет к перегреву, перегрузке, дальнейшему снижению прямого падения напряжения, и еще более быстрому нарастанию температуры кристалла. Дешевые светодиодные светильники с резистивным ограничением тока часто проявляют данный недостаток в самый неожиданный момент.

Допуски по колебаниям напряжения блока питания в сочетании с различиями в прямом падении напряжения на светодиоде (на этапе производства светодиоды не идеально одинаковы по данному параметру), и в связи с отрицательным температурным коэффициентом падения напряжения — в любой момент эти факторы в совокупности могут вызвать нарушение безопасного режима функционирования светодиода и спровоцировать скатывание к его саморазрушению.

Конечно, если конструкция светодиодного светильника (особенно — радиатора) достаточно надежна, то кратковременными снижениями яркости можно пренебречь, так как они очень редки и перегревы эти кратковременны. Но если перегрев продолжителен, то превышение температуры сразу превращается в настоящую угрозу для светильника.

Причины выхода светодиодов из строя при их перегреве

Светодиоды разрушаются от перегрева по нескольким причинам. Первая причина — изменение механического напряжения внутри светоизлучающего кристалла и монолитной светодиодной сборки. Вторая — нарушение герметичности, проникновение влаги и окисление. Защитный эпоксидный слой деградирует, происходит расслоение на границах, контакты кристалла испытывают коррозию.

Третья — рост количества дислокаций в кристалле ведет к изменению путей тока и возникновению точек превышения плотности тока и, соответственно, к перегреву этих точек. Наконец — явление диффузии металлов на контактах при повышенной температуре, что также в конце концов приводит к неработоспособности светодиода.

Разработчики светодиодов всеми силами пытаются свести к минимуму данные факторы отказа, и поэтому все время технологически совершенствуют производственный процесс. Тем не менее из-за перегрева отказы все равно неизбежны, хотя и становятся реже с совершенствованием производственного процесса.

Механическое давление — самая частая причина преждевременного выхода светодиодов из строя. Суть в том, что при перегреве герметик размягчается, электрические контакты и соединительные проводники смещаются от «заводского» положения, а когда температура наконец падает, происходит охлаждение, и герметизирующее вещество вновь застывает, но при этом давит на уже немного смещенные соединения, что в итоге приводит к явному нарушению первоначально равномерной проводимости. Благо, светодиоды изготовленные без соединительных проводников практически лишены данного недостатка.

Паяные соединения между светодиодом и подложкой также испытывают похожую проблему. Регулярные циклические, не заметные на глаз, размягчения и затвердевания заканчиваются появлением трещин в пайках и нарушением исходного контакта. Вот почему встречаются отказы светодиодов по причине разрыва цепи питания, причем разрыв этот часто не виден. Чтобы предотвратить данную проблему, можно максимально уменьшить разницу между безопасной рабочей температурой светодиода и температурой окружающей среды.

Мощные светодиоды (потребляющие больше электрической мощности) дают больше света, но их световая отдача все же имеет ограничение. Вот почему у потребителей и производителей часто возникает опасный соблазн эксплуатировать светодиоды в светильнике на полную мощность, дабы получить максимально возможную яркость. Но это действительно опасно, если не обеспечить достаточно эффективного охлаждения.

Разумеется, дизайнеры хотят создавать элегантные светильники интересных форм, однако они порой забывают что необходимо обязательно обеспечить соответствующее движение воздуха и адекватный отвод тепла — это для светодиодов зачастую самое главное, следующее за стабилизированным и качественным источником питания.

Да и непосредственно установка светодиодных светильников важна. Если один светильник установлен над другим таким же мощным, то поток воздуха от нижнего светильника может быть замедлен верхним, и нижний будет находиться поэтому в худших температурных условиях. Либо например теплоизоляция в стене или на потолке помещения может помешать теплоотводу, даже если при конструировании светильника все тепловые расчеты были выполнены идеально и технологически он изготовлен максимально правильно. Все равно вероятность отказа повышается просто из-за необдуманного и неграмотного монтажа готового изделия.

Одно из достойных решений проблемы перегрева светодиодов — включение в схему драйвера температурной защиты с обратной связью именно по температуре. Когда температура излучателя по какой-нибудь причине опасно повысилась — для понижения мощности, с целью удержания температуры внутри безопасного диапазона, автоматически уменьшается ток.

Простейшее решение — добавить в схему термистор с положительным температурным коэффициентом (можно и с отрицательным температурным коэффициентом, но тогда схема должна инвертировать сигнал в цепи обратной связи).

Пример термической защиты с использованием термистора

Для примера рассмотрим схему на базе специализированного микроконтроллера с токоограничительной цепью. Когда температура поднимается выше определенного порога (задается термистором и резисторами), термистор с положительным коэффициентом сопротивления, закрепленный на радиаторе вместе со светодиодами, увеличивает свое сопротивление, что приводит к соответствующему уменьшению тока в выходной цепи драйвера.

В этом плане очень удобны схемы драйверов с регулировкой яркости по принципу ШИМ (широтно-импульсной модуляции), позволяющие одновременно и вручную регулировать яркость, и защищать светодиоды от перегрева.

Решение с термистором удобно тем, что изменение тока, а значит и уменьшение яркости, будет в такой схеме происходить плавно, незаметно для глаз и нервной системы, а значит ничего не будет мерцать и не вызовет у окружающих людей и животных раздражения. Температура верхней границы просто определяется выбором термистора и резистора. Это гораздо лучше решений с термодатчиками, которые просто резко размыкают цепь и дожидаются пока радиатор остынет, а потом снова включают освещение на полную яркость.

Специализированные микросхемы-драйверы светодиодов, безусловно, стоят денег, однако получаемые взамен надежность и долговечность работы светильника многократно окупят это вложение.

Стоит лишь вспомнить, что при соблюдении нормального температурного режима эксплуатации светодиодов их срок службы измеряется десятками тысяч часов, тогда и вопросы касательно материальных затрат на «правильный» драйвер отпадают сами собой.

Важно лишь обеспечить самому драйверу постоянную невысокую температуру, для этого всего лишь не нужно размещать его близко к радиатору светодиодов. Не правильно делают те, кто донельзя стремится уплотнить размещение компонентов внутри корпуса прожектора. Лучше вывести корпус драйвера отдельным блоком. Здесь безопасность и предусмотрительность — залог долговечности светодиодов.

Лучшие микросхемы для управления питанием светодиодов оснащены внутренними цепями защиты от собственного перегрева на тот случай если микросхема по конструктивным соображениям разработчика светильника все же должна размещаться в одном корпусе с заметно нагревающимися компонентами, такими как радиатор. Но лучше вообще не допускать перегрева микросхемы выше 70 °C и оснастить ее собственным радиатором. Тогда и светодиоды и микросхема драйвера проживут дольше.

Интересным может оказаться решение с применением двух последовательно соединенных термисторов в цепи термической защиты. Это будут разные термисторы, так как безопасные температурные границы у микросхемы и у светодиодов различны. А вот результат будет достигнут что надо — плавная регулировка яркости как при перегреве драйвера, так и при перегреве светодиодов.

Греется светодиодный светильник

Здравствуйте. Заказал светильник у «специалистов». Декларировали мощность порядка 110 ватт, и порядка 12 тыс.люменов. поставил его на аквариум 180 литров. Отрегулировал при запуске аквариума на 40% мощности. Он грелся, но был просто теплый. Через 2 месяца решил добавить мощность, так как банка разогналась, заметил что света немного не хватает. Добавил мощность до 70%. Через пол часа заметил, что светильник и блок питания от него греются так, что рука терпит 3 секунды. Далее будет ожог. То есть они прям раскаленные. делать костыли типа кулеров не хочется. у кого какие мысли есть? То есть вопрос в том, что могу пользоваться мощностью не более 40%. Дальше критично греется. и еще вопрос: блок питания закреплен внутри тумбы из дсп, на стенке. При таком нагреве есть ли риск возгарания/замыкания?

Свой на Aqa.ru, Советник

Свой на Aqa.ru, Советник

Сложно высказывать мысли, не зная вообще ничего. Наши «мастера» могут впихнуть стабилизатор напряжения — потому что «и так сойдет, ток выставил и ладно — зачем тратиться на драйвер». Если знаете — марку диодов.

Читайте также  Технические характеристики провода ПВС

Изменено автор lonelity

А как Вы определили что именно 40% выставлено?

Что посоветуете? Если оставить как было -мощности не хватает.

Я бы выше 12в не накручивал, то есть посоветовал бы измерить напряжение на выходи и настроить 12в а там посмотрел бы хватает или нет.

логично, что у вас сильно греется. слишком маленькая площадь пассивного охлаждения для 100 ватт. и с блоком питания тоже самое — высокая нагрузка и пассивное охлаждение (встроенного вентилятора, насколько я понял, там нет.)

формула расчета радиатора

где q- рассеиваемая мощность, a-коэфф. теплоотдачи, S-площадь радиатора, t1-температура прибора (радиатора), t2-температура воздуха.

Max Rage
Всего добавил примерно до 70%, потом снизил до 60. Бесполезно выше 50 греется практически одинаково что при 100, что при 60.

Свой на Aqa.ru, Советник

возьмите вольтметр и установите +12В. Если не хватает света — прдется добавлять еще светильник.

По идее, в комплекте с этим светильником идет контроллер, управляемый со смартфона. Но он глючный, жду замену уже 2 мес. Возможно через него получится увеличить именно мощность, а не напряжение?

Свой на Aqa.ru, Советник

им можно только диммировать скорее всего.

есть подозрение, что про световой поток наврали 80лмн/л это очень много —

Max Rage
в комплекте с этим светильником идет контроллер. Возможно через него получится увеличить именно мощность, а не напряжение?

В вашем случае ничего не получится . Контроллер только регулирует напряжение ( в вашем случае) от 0 до 12 вольт . Как я понимаю у вас в светильнике стоят обычные светодиодные линейки с токоограничивающими резисторами и питаются они блоком питания ( не драйвером) . Если вы замените свой блок питания на более мощный — ничего не изменится ; если подадте больше 12 вольт — ваш фонарь будет светить ярче , НО не долго — очень быстро выйдут из строя токоограничивающие резисторы , и греться он будет ещё сильнее ( что тоже не прибавит долговечности светильнику ).
Поймите — производитель вашего светильника не оставил вам возможности увеличить мощность т.к. использовал не очень хороший радиатор , у вас он уже сильно греется , а что с ним будет если вы , скажем, увеличите напряжение до 15 Вольт или добавите ещё пару-тройку линеек .

Изменено автор froll-72

Понятно ((( видимо придется ставить еще один светильник. Но, как говорится, сэкономил-заплатил дважды.

Греется светильник точечный в потолке из ПВХ панелей. Решение проблемы

Нежданный сюрприз при установке точечного освещения гарантирован многим. Как он проявляется? Сильно греется светильник, так как лампа передает избыточное тепло на корпус. А теперь представьте, что осветительный прибор вмонтирован в подвесной (натяжной) потолок из панелей ПВХ (МДФ или вагонки). Чем это чревато? В лучшем случае — расплавлением и деформацией посадочного места.

Чтобы перестраховаться и приобрести безопасные точечные светильники для подвесных потолков, нужно знать характеристики конкретных ламп освещения и ознакомиться с объективными отзывами людей, пользующимися ими. К сожалению, не задумываясь об избыточном нагреве, я лично столкнулся с данной проблемой. После покупки светильников под цоколь GU5.3, лампы к ним подбирались лишь исходя из цены (дешевой) и мощности (50 Вт). А после их установки в потолок из ПВХ панелей, было обнаружено, что по истечении 10 — 15 минут работы ламп, к корпусам светильников невозможно дотронуться рукой. Они настолько нагревается, что дальнейшее использование вмонтированных в них ламп (в конкретном случае — галогенных) становиться небезопасным.

Почему греется светильник с галогенными лампами

Чтобы разобраться в причинах нагревания точечного светильника, необходимо изучить конструкцию и принцип работы галогенной лампы. Конструктивно данная лампа представляет собой резервуар, дополненный галогенидами (парами йода и брома). По сути, это та же лампа со спиралью накаливания. Принципиальное отличие лишь в наличии буферного газа, благодаря которому температура спирали из вольфрамовой проволоки повышается.

Конструкция галогенной лампы:

a — низковольтная капсульная лампа.
b — лампа с отражателем для встраиваемых светильников.
c — лампа под патрон с резьбой Эдисона.
1 — вольфрамовая нить (спираль).
2 — стеклянная колба.
3 — электроды.
4 — контактная группа.
5 — отражатель (рефлектор).

Принцип работы галогенной лампы (галогенный цикл):

  • Галогены (йод или бром) вступают в реакцию с вольфрамом, не давая ему оседать на колбе.
  • Обратный процесс происходит вблизи тела накала, где соединения при нагреве распадаются, и атомы вольфрама возвращаются на спираль.

Несмотря на то, что галогенный цикл значительно улучшает производительность и срок эксплуатации, все же главным недостатком ламп данного типа является их высокая теплоотдача.

Температура нагрева галогенной лампы в зависимости от потребляемой мощности может достигать 150°С, что значительно сокращают область ее применения. Такие лампы не рекомендуется монтировать в точечный светильник потолка из панелей ПВХ, натяжного потолка (критическая точка нагрева для поливинилхлоридных потолков составляет 70⁰C).

Греется ли светодиодная лампа

Основной элемент светодиодной (LED) лампы — светоизлучающий диод. В зависимости от мощности лампы, таких диодов на корпусе может быть смонтировано от нескольких до нескольких десятков штук.

Светодиод представляет собой полупроводник, издающий свечение при прохождении через него электрического тока в одном направлении. Данный диод имеет узкий спектр излучения, зависящий от химического состава полупроводника. Более детально на конструкции и принципе работы останавливаться не будем. Раскроем лишь основной интересующий вопрос — греются ли светодиодные лампы.

Светодиодные лампы нагреваются — это факт. Но, в отличие от обычных и галогенных ламп накаливания, температура корпуса светодиодной лампы в рабочем состоянии не достигает критических значений и колеблется в пределах от 15°C до 70-80°С.

Почему греются светодиодные лампы? Тепло в процессе работы выделяется на кристалле полупроводникового перехода. Если не отводить тепло от данной площадки, то кристалл перегревается и перегорает. Поэтому, светодиоды в LED лампах устанавливаются на печатной плате, имеющей хорошие показатели теплопроводности. Печатная плата в свою очередь крепится к радиатору, который аккумулирует и постепенно выводит излишки тепла.

Помимо низкой теплоотдачи LED лампы выделяются минимальным потреблением электроэнергии, незначительной восприимчивостью к циклам включений/выключений и высоким сроком службы (от 20 000 до 100 000 тысяч часов работы).

Единственное обстоятельство, которое может заставить задуматься перед покупкой светодиодов высокая цена. Однако, учитывая что светодиодные лампы служат долго и потребляют в 5 — 6 раз меньше электроэнергии, разница в цене вполне оправдана.

Какую лампу использовать в подвесном потолке из панелей ПВХ

Точечное освещение в подвесных конструкциях из панелей ПВХ (или натяжных потолках) должно соответствовать ряду требований. Основное — температура нагрева лампы и корпуса светильника. Материал рассматриваемых потолков, обладая низкой термостойкостью, под воздействием больших температур может пожелтеть, покрыться пятнами, растрескаться и утратить эластичность. Уберечься от данных деформаций можно подобрав оптимальный источник света. На личном примере, выбирая межу галогенной или LED лампой, оптимальным оказался последний вариант.

Определившись, что температура нагрева светодиодных ламп невысокая, а цена в 2 — 3 раза выше галогенных образцов, дополнительно рекомендуется изучить полный сравнительный анализ:

Критерий Светодиодные лампы (LED) Галогенные лампы
Принцип работы В основу светодиодного освещения заложен принцип работы полупроводников. Энергия образуется в ходе движения положительных и отрицательных зарядов, и максимальная ее часть выделяется в виде фотонов видимого света. Принцип действия схож с работой лампы накаливания. Вольфрамовая спираль является телом накаливания в галогенных лампах. Она накаливается до свечения под воздействием электрического тока. Галогениды, находящиеся в колбе со спиралью возвращают вольфрамовые испарения к телу накаливания, значительно продлевая работоспособность лампы.
Наполнение колбы лампы Наполнение колбы не имеет значение, так как свет исходит непосредственно от диодов и не имеет химической составляющей. Внутри колбы вакуум или инертный газ (азот, аргон, криптон). Вольфрамовая нить дополнена активными веществами, которые отвечают за химический цикл.
Нагревание в процессе свечения Светодиодные лампы имеют минимальный нагрев – до 70°С. У галогенных ламп сравнительно высокая теплоотдача — 150°С.
Распределение и потребление электроэнергии Почти вся электроэнергия направляется на образование фотонов света. Энергопотребление в 8 — 10 раз ниже, чем у обычных ламп накаливания. Большая часть энергии потребляется на накаливание нити, и незначительная — на образование света. Энергопотребление на 20-50% ниже, чем у обычных ламп накаливания.
Срок службы От 30000 до 100000 часов работы. От 2000 до 2500 часов работы.
Эквивалент мощности (Ватт) Для замены лампы накаливания в 100 Ватт, потребуется светодиодная лампа мощностью 10 Ватт. Для замены лампы накаливания в 100 Ватт, потребуется галогенная лампа мощностью 60 Ватт.
Яркость (Lm) 800 Lm. 700 Lm.
Варианты оттенка светового потока Свет может быть теплого, нейтрального или холодного (белого цвета), цветным (в зависимости от диодов). Теплая, близкая к белому цветовая тональность. Лампы обладают высокой цветопередачей.
Время развития максимальной яркости 2-3 секунды. 2-3 секунды.
Ограничения Не стоит использовать LED лампы в условиях, где необходимо равномерное распределение света, так как светодиоды дают строго направленный световой поток. Лампы сильно нагреваются, поэтому не допускается их применение в пожароопасных светильниках и люстрах. Также не стоит использовать их в сетях с сильными скачками напряжения.
Температурный диапазон работы -90 +200°С. -130 +150°С.
Экологическая безопасность Безопасны. Излучают небольшое количество ультрафиолета.

В заключение стоит отметить, что решением проблемы с сильно греющимися галогенными лампами была их замена на светодиодные энергосберегающие лампы. Конкретная модель представлена на заглавном изображении к данному материалу (ориентировочная стоимость 65 рублей). Ее мощность 5 Вт, что соответствует 35 Вт для галогенной. В результате, светильник почти не нагревается, а свет излучается более яркий по сравнению с ранее установленными галогенными лампами мощностью в 50 Вт. Также, при работе галогенных ламп пространство над потолком настолько освещалось, что панели ПВХ просвечивались. Со светодиодами данные просветы исчезли.

Электрический теплый пол не греет – что делать: описываем досконально

Причины, из-за которых не греет теплый пол, определяют, исходя из сущности конструкции: для водяных решений характерны проблемы с циркуляционным насосом, в электрических и инфракрасных часто выходит из строя датчик температуры.

Отсутствие питания

Первым делом нужно убедиться в том, что к системе обогрева подходит питание. Как правило, пленку либо греющий кабель подключают через терморегулятор, на который подается напряжение. Если на дисплее регулятора температуры горят индикаторы, значит питание есть, если индикаторы отсутствуют или не горят, придется проверить вручную почему теплый пол не греет. Вам нужно взять мультиметр и проверить, есть ли напряжение на вводных контактах. О том, как пользоваться мультиметром, мы подробно рассказали в соответствующей статье.

Читайте также  Засолка семги в домашних условиях вкусно и быстро, сухим методом, по классическому рецепту, в маринаде, «по-норвежски»: рецепт

Кстати, низкое напряжение в сети также является причиной, по которой теплый пол не нагревается до нужной температуры. Если к клеммам приходит 200 вольт, а не 220, эффективность обогрева снижается на 20%. Чтобы решить эту проблему нужно установить в доме стабилизатор напряжения.

На видео показывается еще один способы проверки регулятора:

Если на входе напряжение есть, нужно убедиться, что оно нормально подается на сам греющий кабель или инфракрасную пленку. Для этого убедитесь, что никто случайно не задел настройки, т.к. возможно просто температура установлена на минимум, в результате чего включение подогрева не происходит. Также проверьте надежность подключения проводов к клеммам. Плохой контакт также является причиной, по которой электрический теплый пол не греет или слабо нагревается.

С подключением и настройками все в порядке? Замерьте напряжение на выходе из терморегулятора (клеммы, к которым подключается сама система подогрева). Во включенном состоянии оно должно соответствовать параметрам сети. Если это не так, терморегулятор придется заменить.

Убедиться в неисправности терморегулятора можно подключив теплый пол напрямую к сети. Если напольное покрытие начнет нагреваться, значит дело именно в регуляторе.

Типы теплых полов

На профильном рынке представлены 3 вида конструкций:

  • водяная. Система основывается на металлополимерных трубах, заключенных в бетонную стяжку. В качестве теплоносителя используется вода, она подается нагретой из центрального отопления или доводится до нужной температуры в котле. Трубопроводы размещаются спирально или параллельно;
  • электрические. Нагревательными элементами служат кабели, параметры микроклимата в помещении регулируются посредством термостата. Кабели могут быть уложены под стяжку, на нее (то есть под финишную отделку) или непосредственно под чистовой материал. Первая методика распространена при обустройстве кухонь, ванных комнат, балконов;
  • инфракрасные. Базируются на стержнях либо особом пленочном покрытии, работают от электросети и оснащаются терморегулятором. В первом случае рабочими элементами служит графитово-серебряные стержни, заключенные в защитную медную оболочку. Пленочный вариант легче установить, в нем тепло продуцируется также карбоном, запечатанным в полимерную пленку. Это решение не боится механического воздействия.

Последний вариант – это модернизированная, универсальная заводская продукция, адаптированная к любому напольному покрытию.

Электрический теплый пол не греет – причины

Отсутствует питание

Обратите внимание! Теплый пол может не греться даже из-за низкого напряжения в сети. Если напряжение составляет 200 Вольт, то он может не нагреваться, так как, его эффективность существенно падает. Чтобы этого избежать, нужно использовать автоматы защиты от перенапряжения.

Как проверить терморегулятор вы сможете подробно узнать в этом видео. Здесь подробно рассказывают, как выполнить проверку пошагово.

Если есть напряжение, но пол не греет, проверяем целостность всех проводов, которые идут к теплому полу. Единственная причина может быть только там.

Обратите внимание! Иногда люди случайно сбивают настройки. Изначально внимательно посмотрите на терморегулятор, и попробуйте установить все настройки на необходимые значения.

Повреждение системы теплого пола

Если вы проверили, но все работает в полном порядке, тогда причина может скрываться в поврежденной системе. Изначально нужно проверить датчик температуры. Для этого нужно замерить сопротивление термодатчика и кабеля (пленки). Далее проверяем все значения и сверяем их с паспортными, если есть отличия, значит, теплый пол вышел из строя.

Если на экране отобразился «0» – то в системе короткое замыкание. «1» будет означать разрыв сети.

Как проверить сопротивление греющего кабеля смотрите вот в этом видео уроке.

Другие причины

Если вы проверили и все работает, но причину остановить не удалось. Значит, ваш теплый пол был установлен изначально неправильно. Бывают следующие ошибки во время монтажа, которые могут привести к тому, что электрический теплый пол не греет:

  1. Если плохо утеплено помещение, то могут быть слишком большие теплопотери. Поэтому теплый пол может сильно не нагреваться, что доставит массу хлопот.
  2. Бывает так, что во время проектирования была неправильно рассчитана мощность. Если так, то теплый пол не будет нормально греться никогда.
  3. Может быть ошибка во время заливки стяжки для теплого пола. Если расстояние будет слишком большим, то пол нагреваться не будет.

Если у вас присутствуют такие причины, тогда придется переделывать все. По-другому исправить проблемы во время установки сейчас нельзя.

как считать свет на двухтарифном счетчике.

Как починить кабель теплого пола

Неисправность проводов – одна из основных причин неполадок всей системы. В результате электрический теплый пол не греет. Основная причина поломки может скрываться за непредвиденным механическим повреждением проводов. Чаще всего это происходит во время стяжки или при работе плиточников. Чревато это выходом из строя всего обогрева комнаты или определенной зоны.

Справиться с проблемой поможет диагностика. Проверить наличие повреждений можно следующим образом: отключить его от термодатчика, измерив после этого электрическое сопротивление. Здесь нужно пройтись по участкам между всеми жилами, чтобы не пропустить возможной неисправности. Сверять значение нужно с паспортными данными устройства. Допускается погрешность в пределах 5%. Наиболее распространенными случаями считаются:

  1. Мультиметр показывает нулевое сопротивление. Это значит, что в системе произошло короткое замыкание. Чаще всего неприятная ситуация случается после перегрева либо неверно рассчитанного сечение проводов.
  2. Измеритель показал бесконечность. Это даст понять, что в конструкции произошел обрыв кабеля или его перегорание. Стоит проверить соединительные элементы системы.

Ремонт кабеля теплого пола своими руками предполагает не только диагностику, но и выявление места поломки, устранение неисправного узла. Когда прибор показывает корректное значение, то следует перейти к диагностике другого элемента обогрева – терморегулятору.
Система может работать не на полную мощность по одной простой причине: иностранные разработчики предполагают, что теплый пол будет питаться от сети 230 В, когда в действительности соотечественники подключают кабель к источнику 220 В. Здесь и кроется потеря мощности.

Как отремонтировать теплый пол электрический, видео

Диагностика поломок электрического пола

Неисправность теплых полов может привести к полному выходу из строя оборудования или снижению эффективности его работы.

В первом случае можно приступать к диагностике сразу.Во втором сначала нужно объективно оценить работу системы.
Дело в том, что владельцы квартир часто переоценивают способность электрических теплых полов обогревать помещение. В результате им кажется, что система работает недостаточно эффективно.

Если греет не в полную силу

Чтобы объективно оценить работу электрического пола, засеките время, за которое он нагревается, и сравните его со стандартными значениями:

  • Комфорт от пленочного пола без стяжки и клеевого слоя начинает ощущаться спустя 10 минут работы системы;
  • Матовые полы в клеевом слое нагреваются до температуры, заданной термостатом за 6-8 часов;
  • Кабельный теплый пол под толстой стяжкой прогревается сутки.

Если ваши полы укладываются в указанные нормы, то проблем нет. Казаться, что поверхность недостаточно теплая, может из-за разности температур тела (36,6 оС) и той, что устанавливается на термостате (20-30 оС). Задача электрической системы – обогревать пол и воздух до комфортной для человека температуры, а ее среднее значение составляет всего 21 оС.

Если же электрический пол нагревается до рабочей температуры слишком долго или вовсе не может ее набрать, то имеет место хотя бы одна из причин:

  • Термический датчик установлен слишком близко к нагревательному элементу. Когда достигается заданная температура, он заставляет терморегулятор отключаться. Но поскольку тепло еще не дошло до напольного покрытия, оно так и остается не прогретым;
  • Неисправность датчика. Проверьте напряжение на выводах нагревательного элемента и на питании, не отключая при этом терморегулятора. Показания должны быть одинаковыми. Дополнительно проверьте сопротивление датчика, которое должно совпадать со значением, указанным в паспорте терморегулятора;
  • Низкое напряжение. Можно проверить с помощью мультиметра. Напряжение замеряют на клеммах, обозначенных L и N. Перед измерением нужно вынуть терморегулятор из подрозетника. Если напряжение меньше необходимого. То проблема найдена;
  • Отсутствие теплоизоляционного слоя. Потери тепла могут быть настолько большими, что ваш пол не сможет прогреться никогда. Вспомните, при монтаже системы вы использовали теплоизоляционные отражающие материалы. Соблюдали ли правила их применения? Это особенно актуально для владельцев квартир на первом этаже;
  • Неверно рассчитана мощность. При неправильном расчете теплого пола он не будет греть хорошо.

Из списка возможных причин плохого нагрева пола видно, что большинство проблем можно избежать на стадии расчета и укладки электрической системы. Замеченные ошибки, допущенные во время монтажа, исправить легче до отделки финишным покрытием. А если уже устроена стяжка и уложена плитка, то ремонт электрического теплого пола обещает быть долгим и затратным.

Если не греет совсем

Если не греет теплый пол электрический совсем, то нужно провести диагностику в следующем порядке:

  1. Проверьте наличие напряжения. Пол совсем перестает нагреваться только при полном его отсутствии. Если питание есть, то переходите к шагу 2;
  2. Проверьте датчик, измерив на нем сопротивление. Если он неисправен, его придется заменить. В противном случае переходите к шагу 3;
  3. Проверьте работу регулятора температуры. Его замена – самый простой и дешевый способ починки полов. Если он исправен, переходите к шагу 4
  4. Проверьте сопротивление в контурах с помощью того же мультиметра. Если оно не соответствует значениям, указанным в паспорте, то придется искать короткие замыкания или обрывы кабеля.

Если датчик и регулятор температуры исправны, и напряжение есть, а пол все равно не греет, то потребуется его ремонт. Чтобы не демонтировать покрытие целиком, необходим специальный инструмент для поиска неисправностей. Это особенно актуально, если мат или кабель вмонтирован в стяжку, устройство которой – трудоемкое и дорогое занятие.

Причины и способы устранения нагрева кабелей

Нагрев силовых проводов – частая причина пожаров не только на производстве, но и в квартире. Большая температура токопроводящей жилы приводит к расплавленной изоляции, и как следствие – к открытому источнику огня. Если вы заметили, что греется кабель, то устранить причину его нагрева следует немедленно. В определении такой причины и приведению бытового прибора к надлежащему уровню электробезопасности поможет эта статья.

Основные причины нагрева кабелей и проводов

Чтобы понять причину нагрева электрической проводки, необходимо вспомнить азы электротехники. Электрический ток – это упорядоченное движение свободных электронов, на пути которых возникают другие атомы вещества. Определённое количество таких атомов называется электрическим сопротивлением. При слишком большом сопротивлении, увеличивается температура материала.

Читайте также  Сорта хурмы

Пример надёжно затянутых проводов

Данный принцип успешно применяется, например, в водонагревателях. В других бытовых приборах или электрической сети необходимо наоборот, снизить нагрев проводников – довести его до номинального уровня.

Основные причины нагрева кабелей и проводов:

  • . При выборе малого сечения проводов, что преследует практически всех горе-электриков, и неизменной силе тока, происходит быстрое повышение температуры кабеля. Такой же принцип в водопроводных трубах – чем больше диаметр, тем больший напор воды.
  • . Например, незначительное короткое замыкание, на которое не срабатывает автоматический выключатель с завышенными номинальными параметрами. Автомат не размыкает линию – кабель продолжает греться, и через некоторое время прогорает.
  • . Очень быстро окисляются алюминиевые провода, места соединения которых следует проверять чаще медных. Чтобы не беспокоиться за качество скрутки, лучше воспользоваться специальными клеммниками или тщательно пропаять кабели.
  • . Сейчас рынок электротехники стремительно наполняется продукцией из Кореи и Китая, качество которой оставляет желать лучшего. Такой кабель, даже при правильном монтаже, сам по себе может стать причиной нагрева и возгорания.

Способы устранения проблемы

Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.

Бытовая техника

Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.

  1. Проверьте, по всей ли длине кабель одинаково нагрет, или большая температура наблюдается в одном месте. Частая проблема – плохой электрический контакт вилки и кабеля, идущего к бытовому прибору.

Как устранить:

  • Необходимо выкрутить болты крепления корпуса вилки и снять верхнюю крышку.
  • Послабить контакты крепления проводов и достать провода.
  • Зачистить провода и места контактов – устранить все препятствия на пути прохождения электрического тока. Затем уложить провода на своё место и тщательно затянуть болты.
  • Окончательный этап – сборка крышки.
  1. Плохой контакт кабеля на входе бытового прибора. Если вилка цела, качество контактов на должном уровне, а провод греется с другой стороны, то следует проверить распредкоробку (или как её называют – клеммную коробку) бытового прибора.

Как устранить:

  • Выкрутить 4 болта крепления верхней крышки клеммной коробки и снять саму крышку. Под ней размещена клеммная колодка, в которой выполнен прямой контакт входного провода и провода бытового прибора.
  • Колодку следует открутить, достать провода и зачистить их, а также места крепления колодки. Для зачистки удобно использовать небольшой надфиль или мелкозернистую наждачную бумагу.
  • После зачистки, кабели установить в клеммную колодку, затянуть болтами и поставить на своё место крышку.
  1. Если кабель греется по всей длине, а розетка рассчитана на допустимый ток бытового прибора, то причина только одна — низкое качество кабеля. Такой проводник следует заменить.

Электропроводка

Излишнее нагревание проводов в домашней электропроводке сопровождается запахом горелой изоляции и приводит к неправильной работе бытовой техники. В некоторых случаях возможен даже выход из строя электрических приборов.

Последовательность определения неисправности:

  1. Основной проблемой может быть место подключения силовых кабелей в квартирном щитке. Обычно входной кабель крепят к медной шине, от которой пойдут провода дальше в квартиру. Ослабленный контакт на шине приводит к постепенному нагреву кабеля, также возможно искрение. Достаточно зачистить провод и немного подтянуть контакты.

Важно! Многожильные медные провода необходимо сначала опрессовать гильзой, после чего наконечник закрепить на шине с помощью болтового соединения.

  1. Ещё одна причина повышения температуры проводника – слабый контакт на автоматическом выключателе или его неисправность. Высокий номинал автомата приводит к постепенному нагреву кабелей, оплавлению изоляции и его возгоранию. Достаточно включить несколько мощных бытовых приборов, например, стиральную машину и бойлер, при неработающем автомате, и результат не заставит себя долго ждать. Плохой контакт проводника и автоматического выключателя
  2. Распределительная коробка – одно из самых небезопасных мест электромонтажа. Одна недожатая скрутка приводит к сгоревшей изоляции и возможному короткому замыканию. Поэтому все соединения в распределительных коробках лучше выполнять, используя медные клеммники.

Удлинители

Главный совет – не используйте удлинители, намотанные на катушку. Во-первых, для таких изделий часто используют кабель недостаточного сечения, например, 0.75 см 2 . На нормальном удлинителе сечение провода должно составлять не менее 1.5 см 2 . Во-вторых, проводник, намотанный на катушку, становится катушкой индуктивности, что приводит к его скорому выходу из строя.

«Прозвонка» удлинителя на короткое замыкание

Если после включения в удлинитель бытового прибора, повышается температура жил переноски, то начать следует с вилки – проверить качество контактов. Потом перейти к розетке удлинителя и проверить надёжность соединения там. Если контакты в хорошем состоянии с обеих сторон удлинителя – тогда необходимо только менять кабель.

А если греется нулевой провод?

Редкий случай, когда начинает нагреваться нулевой провод в электрическом щитке. Например, при недавней прокладке резистивного кабеля для обогрева пола в квартире. Следует знать, что на нулевом проводнике нет опасного для жизни потенциала, а его температура должна быть в пределах комнатной, но никак не выше.

Что может стать причиной такого нагрева?

  1. . Это означает, что на рабочем ноле сила тока превышает ток, который проходит по фазам. Саморегулирующиеся кабеля, которые используют для обогрева труб, из-за своей мощности приводят к такому результату. При этом ноль может не только перегреваться, но и отгореть.
  2. . Сопровождается неприятным потрескивающим звуком и искрением. Достаточно подтянуть контакт или проверить ближайшее место скрутки и проблема будет устранена.
  3. . Это: индукционные печи, импульсные потребители, нагревательные кабели, источники освещения на основе светодиодов и др.

Последствия некачественного контакта нулевого провода

Заключение

Вышеперечисленные неисправности часто являются последствием одной проблемы – плохого контакта. Конечно, существуют и другие причины: низкое качество кабеля, несоответствие автоматического выключателя, старая проводка и многое другое. Но самое распространённое, это контакт, который оказывает препятствие проходящей по проводнику электрической энергии.

Чтобы избежать последствий чрезмерного нагрева кабеля, необходимо периодически проверять соединения в электрощитовых и распределительных коробках, по мере необходимости – подтягивать или дожимать скрутки, или клеммные колодки.

Почему греется блок питания, основные причины перегрева источников питания.

Блоки питания применяются повсюду. Они различны по мощности, назначению, величине напряжения, а также своему качеству и надёжности. Хорошим источником питания можно назвать тот блок питания, который может стабильно выдавать свои номинальные характеристики, а в случае перегрузок и коротких замыканий не выйдет из строя. Нагреваться может даже достаточно качественный БП, если его нагрузить достаточно сильно (чрезмерная нагрузка, на которую БП изначально не рассчитан). Ну, а что уж говорить о менее качественных источниках электрической энергии.

А что именно вызывает нагрев блока питания? Греются элементы схемы, которые стоят внутри БП. Любой блок питания изначально рассчитывается на свои номинальные токи и напряжения (имеет свою мощность), которые требуются для запитки конкретного электрического устройства. Если к БП подключить более мощную нагрузку, чем та, на которую он изначально рассчитан, то, естественно, он начнет работать в режиме перегрузки, что и вызывает повышенное тепловыделение функциональных элементов схемы. Как правило, нагрев происходит постепенно, хотя при коротких замыканиях и очень большой перегрузке некоторые элементы могут нагреться в течении нескольких секунд. Это может привести к их выходу из строя.

Бываю случаи когда блок питания вначале работал нормально (при подключении к нему номинальной нагрузке, своего устройства, под который он был рассчитан), а со временем вдруг начал нагреваться больше обычного. Тут сначало нужно убедиться, что дело именно в источнике питания, а не в устройстве, которое он питает. Для этого стоит измерить силу тока, что потребляется устройством при нормальной своей работе (сравнить с величиной, указанной в паспортных данных). Причиной же внезапного нагревания самого блока питания может быть:

» высыхание конденсаторов электролитов на схеме БП;

» попадание токопроводящего мелкого мусора на плату схемы;

» проникновение влаги в БП;

» повреждение электрической схемы в результате физического повреждения (к примеру блок питания падал с достаточно большой высоты (что вызвало нарушение в схеме);

» испорченность деталей в результате теплового удара по причине короткого замыкания или сильной перегрузки.

Блоки питания делятся на два основных типа, это трансформаторные (низкочастотные, рассчитанные на работу с частотой в 50 Гц) и электронные (содержащие в себе электронную схему высокочастотного преобразователя). Основными функциональными элементами трансформаторных блоков питания являются: сам силовой понижающий трансформатор, выпрямительный диодный мост, фильтрующий конденсатор электролит, электронная схема стабилизатора и различные защиты от КЗ и перегрузок (если таковые узлы имеются в БП). В этих блоках питания греться могут: трансформатор, если он изначально не точно был рассчитан (что бывает довольно часто) или если возникли перегрузки или КЗ; диодный мостик может греться также от перегрузки и КЗ, и если его номинальный ток меньше того, который через него протекает; слабыми местами схемы стабилизатора БП являются полупроводниковые детали, на которые также влияют перегрузки и токи короткого замыкания. Если говорить о электронных блоках питания, то в большинстве из них уже предусмотрена автоматическая защита от токов короткого замыкания и чрезмерных перегрузок. Хотя лучше все же не подключать нагрузки, на которые БП не рассчитан.

Хорошо, когда блок питания при своей длительной работе вовсе холодный. Хотя некоторое повышение его температуры все же вполне допустимо. Важными функциональными элементами на источниках питания являются полупроводники. Они в большинстве своем сделаны из кремния. Максимальная температура для этого вещества равна 150 градусов. Свыше этого значения кремний уже начинает разрушаться. Так что данная температура является уже критической для электронных схем, содержащих полупроводниковые элементы (а таких на схемах достаточно много).

Другим важным функциональным элементом блоков питания является трансформаторы, на которые намотан медный изолированный провод. Изоляция этого обмоточного провода также имеет свои допустимые пределы по температуре. При периодическом нагревании (чрезмерном) данная изоляция может начать разрушаться, что приводит к появлению короткозамкнутых витков на трансформаторе. Подобное явление в последствии ведет к выходу из строя всего устройства.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий