Система заземления TN-C
Система TN-C: определение, особенности, примеры выполнения
Определение.
Система TN-C — это система распределения электроэнергии, в которой заземлена одна из частей источника питания, находящихся под напряжением. Открытые проводящие части электроустановки здания присоединены к заземленной части источника питания, находящейся под напряжением, посредством PEN-проводников, PEM-проводников или PEL-проводников (определение на основе СП 437.1325800.2018).
Вся информация, которую вы прочитаете ниже практически полностью основана на статьях Ю.В. Харечко с его книги [1], а также нормативной документации [2] и [3].
Особенности
При типе заземления системы TN-C (смотрите рисунок 1) заземлена одна из частей источника питания, находящихся под напряжением, обычно – нейтраль трансформатора. Все открытые проводящие части электрооборудования класса I, установленного в электроустановке здания, имеют электрическое соединение с заземлённой нейтралью трансформатора. Для обеспечения этого соединения и в низковольтной распределительной электрической сети, и в электроустановке здания обычно применяют PEN-проводники. Если в состав распределительной электрической сети входит воздушная линия электропередачи (ВЛ), то её PEN-проводник, как правило, заземляют в нескольких точках, выполняя так называемое повторное заземление PEN-проводника.
PEN-проводник распределительной электрической сети «берет своё начало» от соответствующей защитной заземляющей и нейтральной шины (PEN-шины) низковольтного распределительного устройства трансформаторной подстанции и «заканчивается» на вводном зажиме ВРУ электроустановки здания. С этого зажима начинаются PEN-проводники электроустановки здания, к которым, как правило, присоединяют все открытые проводящие части электрооборудования класса I. То есть PEN-проводник, выполняя функции защитного проводника, пронизывает всю систему распределения электроэнергии от источника питания до открытых проводящих частей электроустановки здания.
Однако в некоторых случаях открытые проводящие части электрооборудования класса I могут быть присоединены не только к PEN-проводникам, но и к защитным проводникам PE электроустановки здания. Например, когда в электроустановке здания применяют трёхфазное электрооборудование класса I, которое не имеет нейтрали и не требует для своего нормального оперирования наличия нейтральных проводников (смотрите рисунок 2), к их открытым проводящим частям присоединяют защитные проводники.
Если электроустановка здания подключения к ВЛ и ответвление от ВЛ к вводу выполнено неизолированными проводами, то PEN-проводник распределительной электрической сети «заканчивается» на зажиме, соединяющем его с PEN-проводником кабеля ввода в электроустановку здания.
Недостатки
«Классическую» систему TN-C можно реализовать только в тех низковольтных электроустановках специального назначения, которые имеют небольшое число электроприёмников класса I, подключенных к электрическим цепям, выполненным медными проводниками сечением 10 мм 2 и более или алюминиевыми проводниками сечение 16 мм 2 и более. Поскольку доля таких низковольтных электроустановок в общем их числе ничтожно мала, а подобных электроустановок зданий практически не существует, тип заземления системы TN-C можно рассматривать в качестве «теоретического» типа заземления системы, как правило, применяемого для разъяснения 4 «практических» типов заземления системы TN-S, TN-C-S, TT и IT.
Обеспечение надлежащего уровня электрической безопасности в электроустановках зданий в большей степени зависит от надёжного функционирования защитных проводников, а именно от гарантированного обеспечения непрерывности их электрических цепей. Непрерывность электрической цепи защитного проводника может сколько угодно долго поддерживаться при протекании по нему в нормальных условиях малого электрического тока, длительное воздействие которого на соединительные контакты не приводит к ухудшению их качества. По PEN-проводнику постоянно протекают значительные рабочие токи, которые, воздействуя на соединительные контакты, могут привести к ухудшению их качества и даже потере электрической непрерывности цепи PEN-проводника.
При применении типа заземления системы TN-C в электроустановках зданий нельзя обеспечить такой же уровень электрической безопасности, как при использовании типов заземления системы TN-C-S и TN-S. Больший уровень электробезопасности в системах TN-C-S и TN-S, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.
Поэтому защитные проводники, обладающие более высокой степенью надёжности, чем PEN-проводники, следует применять в электроустановках зданий, которые «эксплуатируют» обычные лица. По этой причине вполне обоснованным является запрет, наложенный пунктом 312.2.1 ГОСТ 30331.1-2013 на применение типа заземления системы TN-C для электроустановок жилых и общественных зданий, торговых предприятий и медицинских учреждений, в электрических цепях которых требованиями национального стандарта запрещено использовать PEN-проводники.
Поэтому, логично сказать, что низковольтные электроустановки, соответствующие типу заземления системы TN-C, должны обслуживать обученные и квалифицированные лица, которые прошли специальную подготовку, позволяющую им осознавать риски и избегать опасностей, создаваемых электричеством.
Примеры выполнения
На рисунке 1 обозначено:
- заземляющее устройство источника питания;
- заземляющее устройство электроустановки здания;
- открытые проводящие части;
- защитный контакт штепсельной розетки;
- ПС — трансформаторная подстанция;
- КЛ — кабельная линия электропередачи;
- ВЛ — воздушная линия электропередачи.
Рис. 2. Система TN-C трехфазная четырехпроводная, в которой функции нейтрального и защитного проводников объединены в одном проводнике во всей системе (на основе рисунка 31С из [1]) Рис. 3. Система TN-C однофазная двухпроводная, в которой функции нейтрального и защитного проводников объединены в одном PEN-проводнике во всей системе Рис. 4. Система TN-C однофазная двухпроводная, в которой функции линейного и защитного проводников объединены в одном PEL-проводнике во всей системе
При типе заземления системы TN-C PEN-проводник обычно разделяют на защитный и нейтральный проводники на зажимах стационарного электрооборудования. Если переносное и передвижное электрооборудование класса I подключают с помощью штепсельных розеток, PEN-проводник разделяют в штепсельной розетке.
При реализации системы TN-C сечения PEN-проводников в электрических цепях электроустановки здания не может быть меньше 10 мм 2 – медных и 16 мм 2 – алюминиевых. При этом сечение фазных проводников в конечных цепях освещения обычно равно 1,5 и 2,5 мм 2 , в конечных цепях штепсельных розеток – 2,5 мм 2 .
В электроустановке здания, соответствующей типу заземления системы TN-C, PEN-проводник должен иметь место во всех распределительных электрических цепях и в подавляющем числе конечных электрических цепей. Разделение PEN-проводника в таком электроустановке здания может быть произведено только при подключении переносного и передвижного электрооборудования класс I, выполняемого посредством штепсельных розеток. Кроме того, PEN-проводники заменяют защитными проводниками в ограниченном числе конечных электрических цепей, проводники которых имеют сечения менее 10 мм 2 по меди и 16 мм 2 по алюминию, и в некоторых однофазных конечных электрических цепях. Такими электрическими цепями обычно являются конечные электрические цепи штепсельных розеток и освещения. В остальных конечных электрических цепях должны быть использованы PEN-проводники.
Систему TN-C можно легко реализовать при подключении вновь сооружаемой низковольтной электроустановки к существующей или сооружаемой распределительной электрической сети. Однако при этом типе заземления системы сложно обеспечить такой же уровень электрической безопасности, как в системах TN-C-S, TN-S и TT. Кроме того, низковольтные электроустановки, соответствующие типу заземления системы TN-C, характеризуются повышенным уровнем электромагнитных помех, негативно воздействующих на чувствительное информационное оборудование. Поэтому применение типа заземления системы TN-C можно допустить только в тех системах распределения электроэнергии, в состав которых входят низковольтные электроустановки специального назначения.
Об идентификации типов заземления системы TN-C и TN-C-S
Тип заземления системы TN-C, таким образом, практически невозможно реализовать в наиболее распространённой системе распределения электроэнергии, состоящей из распределительной электрической сети и подключённой к ней электроустановки здания, потому, что в электрических цепях подавляющего числа электроустановок зданий следует применять защитные проводники PE. Более того, основываясь на факте их применения в части электроустановки здания, можно утверждать, что на рисунке 1 показан пример системы TN-C-S, а не системы TN-C. Причем это утверждение не противоречит требованиям стандарта МЭК 60364-1 и ГОСТ 30331.1-2013 к типам заземления системы.
Главным критерием, на основании которого производят идентификацию типов заземления системы TN-C и TN-C-S, является разделение PEN-проводника для части системы распределения электроэнергии. В международном и национальном стандарте установлены следующие общие правила:
- если в системе распределения электроэнергии в качестве защитного проводника используют только PEN-проводник, то речь идет о системе TN-C;
- если в части системы распределения электроэнергии PEN-проводник разделяют на два проводника — защитный и нейтральный, то следует говорить о системе TN-C-S.
Хотя оба стандарта допускают применение защитных проводников в системе распределения электроэнергии, соответствующей типу заземления системы TN-C, в них не установлены какие бы то ни было требования к «размерам» той части её элемента — электроустановки здания, в электрических цепях которой используют защитные проводники. Поэтому в некоторых случаях чрезвычайно сложно правильно идентифицировать тип заземления системы TN-C или TN-C-S в конкретной электроустановке здания, если в какой-то её части применяют защитные проводники. Для решения этой проблемы можно применить дополнительный критерий — «размер» части электроустановки здания, в электрических цепях которой используют PEN-проводники.
Системы заземления TN-S, TN-C, TNC-S, TT, IT
При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.
Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.
Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.
Виды систем искусственного заземления
Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.
- T — заземление.
- N — подключение к нейтрали.
- I — изолирование.
- C — объединение функций, соединение функционального и защитного нулевых проводов.
- S — раздельное использование во всей сети функционального и защитного нулевых проводов.
В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.
1. Системы с глухозаземлённой нейтралью (системы заземления TN)
Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:
- N — функциональный «ноль»;
- PE — защитный «ноль»;
- PEN — совмещение функционального и защитного нулевых проводников.
Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».
Система заземления TN-C
Система заземления TN-C
Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..
Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .
Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.
В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.
Система TN-S
Система заземления TN-S
Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.
В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.
Система TN-C-S
Система заземления TN-C-S
С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».
Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.
Система заземления TT
Система заземления TT
При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.
Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.
2. Системы с изолированной нейтралью
Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.
Система IT
Система заземления IT
Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.
Надежное заземление — гарантия безопасности
Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.
Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.
Системы заземления TN-C-S, TN-C, TN-C, TT, IT
Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:
- трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем — 220 вольт.
- однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.
А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.
Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.
В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.
Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.
Условные обозначения
Для лучшего понимания материала, разберем принятые условные обозначения:
- L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
- N — рабочий нуль источника питания (нулевой проводник).
- PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
- PEN — проводник, совмещающий в себе рабочий и защитный нули.
Самая безопасная система, это TN-S.
Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).
На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.
Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.
Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.
Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.
В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.
Заземление TN-C не обеспечивает полной безопасности по следующей причине:
«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).
Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.
В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.
По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!
Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.
Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!
Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.
Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.
Как она устроена, и в чем отличие от TN-S?
В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.
На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.
В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.
Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.
При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.
Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.
Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.
Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.
Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.
Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.
Вывод
Единственный безопасный способ — установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.
После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.
Видео по теме
Системы заземления
- 30 апреля 2018 08:27:00
- Просмотров: 9625
Обустройство систем заземления необходимо при монтаже и эксплуатации сетей освещения, различных электроустановок и электрооборудования. В соответствии с нормативными документами, при эксплуатации электрооборудования может использоваться только искусственные системы заземления, спроектированные в соответствии с особенностями объекта или электроустановки.
Обозначения в системах заземления
В обозначениях систем используются латинские буквы:
- T (земля);
- N (нейтраль или функциональный ноль);
- I (изолированный);
- C (соединение защитного и функционального «ноля»);
- S (раздельное применение во всей сети защитного и функционального «ноля»).
В обозначениях систем первая буква определяет тип заземления источника питания, вторая буква указывает тип заземления открытых компонентов электроприемника.
Правильно спроектированное и реализованное заземление является одним из базовых условий обеспечения электробезопасности объектов, на которых эксплуатируется бытовое или промышленное электрическое оборудование. При выполнении заземления необходимо руководствоваться требованиями ПУЭ (Правила устройства электроустановок).
Две категории систем заземления
В соответствии с ПУЭ все виды заземления разделяются на две категории. В первую входят системы, в которых нейтраль изолирована (пример – IT). Во вторую — системы, в которых нейтраль является глухозаземленной (пример — TN и ее подсистемы: TN-S, TN-C, TN-C-S).
TN: система заземления с глухо заземленной нейтралью
В данной системе защита производится путём соединения глухо заземленной нейтрали с неизолированными компонентами электроустановки. В системе заземления TN проводником является РЕ, то есть «нулевой» проводник. То есть при её обустройстве корпусные экраны и детали электропотребителей, проводящие ток, должны быть подключены к общему «нулю» — проводнику, который соединен с нейтралью.
Функциональный «ноль» в данном случае обозначается буквой «N», а совмещение «нулевого» функционального и защитного проводника – «PEN». У данной системы заземления есть три подвида TN-C-S, TN-C и TN-S. Отличия между ними заключаются в разных способах подключения проводников «PE» и «N».
В этой системе не применяется метод заземления нейтрали при помощи дугогасящего реактора, который в других типах систем используется в качестве компенсаторного устройства.
TN-C: система с рабочим и защитным «нулём» в одном проводнике
Стандартная TN-C система заземления – это 4-проводная схема подачи тока с «нулевым» и тремя фазными проводами. Данная система подразумевает совмещение нулевых рабочих и защитных проводника в одно на всём протяжении. Другими словами, в TN-C PEN-проводник общий, он применяется и для подключения приёмников тока и для «зануления» их корпусов (открытых токопроводящих компонентов).
«Зануление» корпуса нужно на случай повреждения изоляции либо обрыва фазного провода, при которых может произойти его замыкание на корпус. При такой схеме это приведет к срабатыванию автоматики, которая отключит напряжение.
У TN-C есть недостатки. Наиболее критичным минусом этой системы заземления является отсутствие схем защиты при отгорании или механическом повреждении (обрыве) «нуля». В такой ситуации на корпусах оборудования и устройств создаётся напряжение, которое представляет угрозу для жизни. Еще один недостаток заключается в том, что в ней не используется заземляющий проводник PE — то есть розетки, которые к ней подключены, не заземлены, что приводит к необходимости занулять любое подключаемое электрооборудование.
Важно! Тем, кто проживает в доме, в котором используется система заземления TN-C, нужно знать – при вынужденном присоединении к нулю бытовых приборов в ванных комнатах нельзя применять дополнительные линии уравнивания потенциалов.
На текущий момент TN-C морально устарела. Она до сих пор используется в частных домах и зданиях, построенных в начале и середине XX века. Также она может использоваться там, где степень риска незначительна – к примеру, в уличном освещении.
TN-S: эффективно, но дорого
TN-S, в сравнении с системой заземления TN-C представляет собой более современную, эффективную и безопасную систему, в которой глухозаземленная нейтраль трансформатора (либо генератора) применяется для подключения проводников с «нулём» на стороне источника тока. При её использовании исключен риск возникновения высокого напряжения на корпусах электрического оборудования – даже в том случае, если линия питания будет повреждена.
Между тем есть две причины, из-за которого TN-S не получила широкого распространения в России. Первая – российская энергетика в основном ориентирована на 4-проводные схемы 3-фазного электроснабжения. Вторая причина заключается в дороговизне использования системы заземления TN-S.
При монтаже в ходе подключения трех фаз нужно будет использовать 5 проводов для присоединения оборудования к источнику питания. При однофазном подключении потребуется 3 провода. Из-за распространенности в России 4-проводных схем для трех фаз применение TN-S будет нецелесообразно, так как в этом случае нужно будет протягивать от трансформаторной подстанции отдельную линию, состоящую из 5 проводов.
В новой редакции ПУЭ, а также в ГОСТ Р50571 есть указание о монтаже системы TN-S на объектах, требующих высокой степени электробезопасности. Также в данных регламентирующих документах предписывается ее обустройство при строительстве и капитальном ремонте зданий.
TN-C-S: соединение комбинированного «PEN» с глухозаземленной нейтралью
TN-C-S представляет собой распространенную систему заземления, которая обеспечивает более высокий уровень электробезопасности, чем TN-C и при этом менее затратна, чем TN-S. Принцип этого типа подключения – в подаче питания с применением комбинированного «PEN», который соединяется с глухозаземленной нейтралью. При входе в здание он разделяется на защитный ноль («PE») и проводник, который на стороне электропотребителя выполняет функцию «N», то есть рабочего ноля.
В соответствии с требованиями ПУЭ (пункт 1.7.135), в точке, где разделяется рабочий и защитный ноль, должны быть использованы шины или зажимы для соединенных проводников. Комбинированный «PEN» нужно подключать к шине или зажиму защитного ноля «РЕ».
Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного — проводника. При этом сечение перемычки, расположенной между шинами, не должно быть меньше сечения комбинированного PEN.
Плюсы: система заземления TN-C-S надежнее TN-C: она исключает риск обрыва нуля, при этом затраты на её обустройство будут лишь немногим выше, чем на эту устаревшую систему.
Минусы: отгорание или излом провода PEN на протяженности линии от объекта до подстанции приводит к образованию на поверхности электроприборов напряжения, опасного для жизни. Из-за этого при обустройстве системы TN-C-S необходимо обеспечить надежную защиту от повреждения комбинированной линии PEN.
Система заземления TT: новинка в российской энергетике
Данная система подразумевает «глухое» заземления нейтрали линии питания. При этом заземление открытых частей электроустановки, способных проводить ток, производится с использованием устройства, которое «автономно» от глухозаземленной нейтрали. При 3-фазном подключении напряжение передается по 4 проводам, в которых четвертый представляет собой «N», то есть функциональный ноль. На стороне электропотребителя монтируется заземлитель (чаще всего модульно-штыревой). Затем к заземлителю производится соединение проводников защитного ноля, которые соединяются с корпусными компонентами.
На территории РФ система заземления TT разрешена сравнительно недавно. Она получила широкое распространение в воздушных линиях электропередач, которые используются для электроснабжения сельской местности, дачных, коттеджных поселков и других загородных поселений. Еще одно направление использования этой системы – это линии электроснабжения объектов временной мобильной торговли в городских условиях.
ТТ стала удачной заменой системы TN-C-S, которая в указанной области применения не гарантирует надежность защиты комбинированного «PEN».
При применении такого типа заземления необходимо обустройство защиты от попадания молнии. Также нужно использовать специальную автоматику, обеспечивающую защитное отключение. Еще один момент – в ПУЭ есть указание по использованию системы заземления ТТ – подача тока на электроустановки с её применением практикуется только тогда, когда не может быть обеспечена электробезопасность в системе TN.
IT: система заземления с изолированной нейтралью «I»
Двумя основными особенностями этой системы является наличие линии защитного заземления («Т») и автономной нейтрали «I». При использовании IT для передачи тока от источника к электропотребителю используется минимум проводов. При этом необходимо обеспечить надежность присоединения к заземлителю всех компонентов корпусов электрооборудования, способных проводить ток. Еще одним нюансом системы заземления IT является отсутствие функционального ноля «N» на линии источник тока – электропотребитель.
Системы заземления
1. Введение.
Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:
- системы с глухозаземленной нейтралью к ним относятся система заземления TN (которая в свою очередь делится на системы TN-C, TN-C-S, TN-S) и система заземления TT
- системы с изолированной нейтралью к ним относится система заземления IT
Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:
- T (от франц. terre — земля) — заземлено;
- N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
- I (от франц. isolé — изолированный) — изолировано от заземления.
Так же в статье встречаются следующие аббревиатуры:
- N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
- PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
- PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.
Теперь подробно разберем перечисленные типы систем заземления.
2. Система заземления TN
Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).
Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.
2.1 Система заземления TN-C
Система TN-C — это система , в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).
Система заземления TN-C схема:
Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.
Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.
Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.
2.2 Система заземления TN-C-S
Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).
Согласно пункту 1.7.135 ПУЭ В месте разделения -проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. -проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного -проводника.
Таким образом схема системы заземления TN-C-S будет иметь следующий вид:
Примечание: перемычка между шинами должна иметь сечение не менее сечения -проводника.
Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.
Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.
Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.
Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.
Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть здесь.
2.3 Система заземления TN-S
Система TN-S — это система , в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.
Система заземления TN-S схема:
Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.
Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).
3. Система заземления TT
Система — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Система заземления TT схема:
В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе , допускается только в тех случаях, когда условия электробезопасности в системе не могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
где а — ток срабатывания защитного устройства; a — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.
4. Система заземления IT
Система — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.
Система заземления IT схема:
Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Зануление tn c — опасно или нет
Зануление tn c опасно и недопустимо в быту, в том числе во всех однофазных сетях. В данном обзоре будут в доступной форме с использованием наглядных примеров описаны основные особенности системы заземления TN-C. Тема актуальная для владельцев частных домов и квартир старой постройки.
TN-C, зануление, заземление — основные определения
Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
Чтобы понять, что к чему соединяется при занулении, рассмотрим в качестве примера две системы заземления TN-C и TN-C-S (сети постоянного тока опустим):
Система заземления TN-C | Система заземления TN-C-S |
1 — соединение открытых проводящих частей электроустановок с глухозаземленной нейтральной точкой генератора или трансформатора в сетях трехфазного тока. | 2 — соединение открытых проводящих частей электроустановок с глухозаземленным выводом источника однофазного тока. То есть, разделив с одновременным заземлением PEN проводник на нулевой рабочий N и защитный РЕ, вы трансформируете TN-C в более безопасную и надежную систему TN-C-S. Убрав же перемычку между PE и N (разделение PEN не происходит) вы получите систему TT. |
В системе TN сопротивление заземлителя повторного заземления PE проводника на вводе в частный дом не нормируется (но лучше его сделать достаточно низким), сопротивление заземлителя повторного заземления PEN проводника ВЛ не более 30 Ом — и это обязанность оператора распределительной электрической сети. Сопротивление заземлителя TT для отработки УЗО 500 — 1500 Ом.
Заземление — это преднамеренное соединение частей электроустановок и заземляющего устройства (конструкции из металлических полос и штырей, снижающие уровень напряжения до безопасного для человека значения). И важно понимать принципиальное отличие заземления от зануления.
TN-C — эта система заземления, при которой к потребителю от трансформатора с глухо заземленной нейтралью приходит три фазы и PEN проводник. Последний объединяет в себе рабочий нулевой проводник и защитный проводник.
В современном жилищном строительстве система TN-C запрещена (ПУЭ 7.1.13). Она встречается лишь в домах старой постройки. И если вы живете в таком доме, нужно понимать, что PEN (в данном случае — нулевой) проводник является только рабочим. Он не может применяться одновременно и для защиты путем соединения с корпусами электроприборов. В противном случае при обрыве комбинированного нулевого проводника на корпусах электроприборов появится опасное для жизни напряжение.
Система TN-C может применяться только в трехфазных сетях, и только на заводах, в различных производственных зданиях (там находятся бригады дежурных электриков, которые планово проводят осмотр и техническое обслуживание электрооборудования), а также в многоэтажных жилых зданиях, но только до ввода в квартиру. В жилых и общественных зданиях может применяться до ближайшей реконструкции. Если в жилом здании проводится ремонт электросетей, то электромонтажники должны перевести сеть на систему TN-S или TN-C-S.
Система заземления TN-C в схеме этажного щита дома старой постройки
Рассмотрим схему этажного щита дома старой постройки с системой заземления TN-C. Сеть трехфазная, и на каждую квартиру на этаже разводится своя фаза. Ноль (PEN проводник) у всех квартир общий. В щитовой три фазы запитаны от автоматов, а PEN проводник идет от общей шины, к которой приходит PEN проводник от трансформаторной подстанции. К этой общей шине подсоединен посредством проводника большого сечения либо стальной полосы еще и контур заземления возле дома.
Из щитовой по этажам отходят вертикальные питающие линии. На этом система заземления TN-C заканчивается, и далее в квартиры подается только фаза и ноль.
Открывая щиток, мы увидим:
- Вводной автомат двухполюсный либо пакетный выключатель. Вводной автомат запитывается от вертикальных питающих линий, представляющих собой в системе заземления четырехжильный кабель либо 4 одножильных силовых провода (3 фазы и объединенные нулевой рабочий и защитный проводник).
- Далее идет счетчик.
- От счетчика фазный проводник идет на группу однофазных автоматов.
- Нулевой проводник от счетчика идет на шину.
- К шине приходят все нули отходящих групп, а к автоматам — отходящие фазные проводники.
Опасность защитного зануления TN-C в быту
Определившись, что в квартирах старого жилого фонда с системой заземления TN-C проводка состоит только из фазы и нуля, перейдем к рассмотрению опасности использования «защитного зануления».
Отсутствующее по проекту заземление (зануление) делает эксплуатацию домашней электропроводки небезопасной. В нашем распоряжении остается только фаза и ноль, которые не обеспечивают защиту от пробоя фазы на корпус электроприбора.
Известно что при замыкании фазы с нулем (PEN) происходит короткое замыкание, мгновенное срабатывание автоматических выключателей и обесточивание сети. В связи с этим некоторые «экспериментаторы» проводят сомнительные манипуляции:
- Используют перемычки в розетках с заземлением. В этом случае перемычка ставится между заземляющим контактом и контактам нулевого проводника.
- Соединяют ноль с землей на корпусе электроприбора.
- Либо соединяют ноль с землей в распаечных коробках или этажных щитах.
Основная цель такой модернизации — добиться срабатывания автоматических выключателей при пробое фазы на корпус. Но делать так ни в коем случае нельзя. Стоит PEN проводнику пропасть (отгореть), и через нагрузку появляется опасный потенциал на всех корпусах электроприборов.
Рассмотрим подробнее ситуацию, когда у нас подключен бытовой прибор (например, стиральная машина). Если в розетке будет перемычка, то в случае обрыва нулевого проводника путь прохождения тока будет следующим:
- По фазному проводнику через стиральную машинку.
- Далее ток будет возвращаться по нулевому проводнику в розетку.
- Поскольку дальше у нас идет обрыв, он через перемычку пойдет через PE проводник и окажется на корпусе стиральной машины.
- В этом случае, если человек коснется корпуса стиральной машины, его ударит током. Поэтому нельзя выполнять такой вид зануления перемычкой в розетке.
Следующий вариант — попытка выполнить зануление в этажном либо квартирном щите путем псевдоразделения PEN на PE и N. В этом случае устанавливается дополнительная шина, от которой отходят PE жилы на корпуса приборов. Данная PE шина соединяется перемычкой с основной N шиной, на которую приходит PEN от питающей линии. В случае появления опасного потенциала на корпусе благодаря перемычке произойдет короткое замыкание и домашняя сеть обесточится. Но, при пропадании нуля произойдет все то же, что и в предыдущем примере. При этом, если додуматься и соединить PE шину с корпусом щитка, то и на последнем будет опасный потенциал.
Если в щитке будет перемычка, то в случае обрыва нулевого проводника путь прохождения тока будет следующим:
- Ток проходит через фазный проводник через электроприбор.
- Далее по нулевому проводнику идет в щит.
- В щите у нас разделение PEN.
- Через точку соединения мы получаем занос потенциала через PE на корпус электрического прибора.
Изображенная на рисунке схема неверна и по причине того, что разделение PEN должно производиться до коммутационного аппарата (в частности вводного автомата). Но даже если и сделать по правилам, то при отгорании нуля в месте до разделения PEN проводника занос потенциала через PE также будет происходить.
Важно не путать отгорание нуля в рассмотренных примерах с отгоранием нуля в распределительном щите, когда в розетках появляется повышенное напряжение.
Помимо опасности зануления важно понимать, что при разделении PEN на PE и N существуют требования к PEN проводнику. Сечение PEN-проводника должно быть не менее 10 мм² по меди и 16 мм² по алюминию. А таких сечений в этажных щитах домов старой постройки нет!
Видео по теме TN-C
Подведем итог. Зануление в системе заземления TN-C в быту опасно, и такая модернизация недопустима. Если в многоквартирном доме старой постройки планируется переход с TN-C на TN-C-S (что маловероятно), то в частном порядке вы можете при замене электропроводки заложить трехпроводный кабель с фазным, рабочим N и защитным PE проводником. Но до тех пор, пока реконструкция не произведена, защитный проводник PE не подключается с двух сторон. То есть вы его в квартире прокладываете. Один его вывод вы вводите в подрозетники для установки розеток и выключателей, второй конец заводится в щит. С обеих сторон он не подключается, изолируется и оставляется до реконструкции системы электроснабжения всего здания.
Источник: