Защита от грозы электрооборудования

Защита от грозы электрооборудования

Защита домашней электропроводки от грозовых перенапряжений

Грозовой разряд очень опасен, так как его величина может достигать нескольких сотен тысяч вольт. После каждой грозы выходит из строя техника, повреждаются линии электропередач, а также могут пострадать люди. Куда ударит молния определить нельзя, поэтому ошибочно полагать, что это явление обойдет стороной ваш дом.

Молния может ни разу не попасть в тот или иной участок электросетей и соответственно опасность грозы может недооцениваться. Если молния за несколько лет ни разу не попала в тот или иной участок электросети, то это не значит, что такая возможность исключена.

Возникновение в бытовой электросети грозового перенапряжения при отсутствии соответствующей защиты приведет к выходу из строя бытовых электроприборов, включенных в тот момент в сеть, а также существует опасность того, что пострадают жители дома. Следовательно, необходимо позаботиться о защите домашней электропроводки от грозовых перенапряжений, чтобы избежать возможных негативных последствий.

Прежде всего, следует отметить, что защиту от перенапряжений должны обеспечивать снабжающие организации путем установки на линиях электропередач соответствующих защитных устройств. Но, как часто бывает на практике, большинство воздушных линий электропередач находятся в неудовлетворительном состоянии и не имеют должной защиты от возможных перенапряжений. В таком случае вопрос защиты домашней электропроводки от возможных перенапряжений – это проблема самих потребителей.

Модульные ограничители перенапряжений

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН.

Основной конструктивный элемент данных защитных устройств – варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в заземляющий контур, к которому подсоединен ограничитель перенапряжения.

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня, тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть наличие работоспособного заземления, предусмотренного конфигурацией электрической сети или же индивидуального заземляющего контура.

Реле напряжения

Что касается реле напряжения, а также устройств, имеющих соответствующую функцию (стабилизатор, источник бесперебойного питания и др.), то следует учитывать, что данные устройства могут работать в заданных пределах рабочего напряжения, их изоляция не способна выдерживать высокие напряжения.

Поэтому в случае попадания молнии грозовой импульс повредит реле напряжения и другие устройства, имеющие соответствующую функцию, не только выйдут из строя, но также повредятся другие электроприборы, включенные в сеть, так как опасный импульс пойдет дальше по электропроводке и включенным в сеть бытовым электроприборам.

То есть реле напряжения не может выполнять функцию защиты от грозовых импульсов. Но все же данное защитное устройство должно быть установлено в домашнем распределительном щитке.

Реле напряжения осуществляет отключение электропроводки в случае выхода напряжения за границы допустимых пределов, так как чрезмерное снижение или увеличение напряжения бытовой электрической сети может привести к выходу из строя бытовых электроприборов.

Сетевые фильтры

Большинство сетевых фильтров имеют встроенный варистор, то есть данные устройства осуществляют защиту включенных электроприборов от скачков напряжения. Многие люди приобретают сетевой фильтр и считают, что включенная в него техника будет защищена от возможных перепадов напряжения. Но при этом в большинстве случаев не учитывается тот факт, что варистор сетевого фильтра, как и в ограничителе напряжения, ограничивает опасный импульс перенапряжения только при наличии рабочего заземления электропроводки.

В сетевом фильтре варистор соединяет фазный или нулевой проводник электропроводки с защитным заземляющим проводником и в случае возникновения перенапряжения опасный импульс уходит в заземляющий контур по заземляющему проводнику, тем самым защищая электроприборы от повреждения. Поэтому включение сетевого фильтра в сеть, не имеющую рабочего заземления, сводит на нет защитную функцию – бытовые электроприборы не будут иметь защиты и в случае возникновения грозового импульса выйдут из строя.

Другие пути попадания грозовых импульсов

Защита домашней электропроводки от попадания грозовых импульсов не позволяет полностью защитить электроприборы от попадания молнии. Не стоит забывать, что молния может ударить не только в провода электрических сетей, но и в кабельные линии другого назначения, которые проложены открытым способом. В данном случае речь идет о сетевом кабеле интернета, телевизионном и телефонном кабеле. Также молния может попасть в установленную вне помещения антенну.

При попадании молнии в кабель или антенну грозовой разряд попадает в устройство, которое к ним подключено. То есть можно сделать вывод, что наличие защиты бытовой электрической сети от грозовых импульсов не исключает попадание опасных импульсов другим путем.

Многие люди при приближении грозы сразу отключают от сети телевизор, компьютер или другую технику, которая имеет внешнюю антенну или подключена к внешним кабельным сетям. После грозы, включив технику в сеть оказывается, что она вышла из строя по причине попадания грозового импульса через внешний кабель или антенну.

Какие меры защиты существуют в данном случае? Чтобы исключить возможное попадание грозового импульса через кабель необходимо его отключить от устройства. Например, отключить сетевой кабель от компьютера или маршрутизатора, либо если идет речь о телевизоре – отключить антенный кабель или кабель кабельного телевидения.

Существуют также специализированные грозозащитные устройства для защиты сетевых кабелей и устройств от разрядов молнии. Но данные устройства достаточно дорогие и соответственно в быту не используются. Более того, они могут оказаться вовсе неэффективными и не обеспечить защиту в случае необходимости.

В заключении следует отметить, что попадание разряда молнии в бытовые электроприборы, электропроводку очень опасно для людей, находящихся в данный момент в непосредственной близости к данным электроприборам, элементам электропроводки. Если бытовой электроприбор, поврежденный разрядом молнии, можно отремонтировать либо приобрести новый, то для человека это может закончиться плачевно.

Также не исключено возгорание техники или электропроводки в результате попадания грозового импульса. Следовательно, нельзя пренебрегать защитой домашней электропроводки от грозовых перенапряжений, а также стараться по возможности отключать сетевые кабели и внешние антенны в случае приближения грозы.

Устройство защиты от импульсных перенапряжений (УЗИП) для частного дома

Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.

Причины возникновения импульсного перенапряжения

ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.

Для чего нужно подключение УЗИП?

Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.

Наглядно про УЗИП на видео:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Классы устройств защиты от ИП

Существует 3 класса аппаратов защиты линии от перенапряжения:

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Читайте также  Уход за кизилом

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Рассказ про УЗИП от специалистов компании ABB на видео:

Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.

Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.

Как защитить дом от импульсных перенапряжений

В техподдержке интернет-магазина «АСберг АС» клиенты часто задают вопросы о том как защитить дом от перепадов напряжения, что такое устройства защиты от перенапряжения, какие они бывают и как их подбирать. Класс продукции УЗИП известен покупателям значительно меньше чем автоматические выключатели или УЗО и игнорирование защиты от перенапряжения часто служит причиной пожаров и выхода из строя дорогостоящего электронного оборудования в частных домах. Хотелось бы восполнить этот пробел в знаниях покупателей и рассказать более подробно о том, что такое УЗИП, для чего он нужен и как его подобрать.

УЗИП: особенности выбора и применения

Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

Что такое УЗИП и для чего оно нужно?

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП. Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено Где применяется
I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта.
Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.
Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ).
Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты.
Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.
Монтируются и подключаются к сети в распределительных щитах.
Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью.
Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.
Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются.
Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Как работает УЗИП?

УЗИП устраняет перенапряжения:

  • Несимметричный (синфазный) режим: фаза — земля и нейтраль — земля.
  • Симметричный (дифференциальный) режим: фаза — фаза или фаза — нейтраль.

В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю. В симметричном режиме отводимая энергия направляется на другой активный проводник.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S.
В системе заземления TN-C применяется трехполюсное УЗИП.
В нем нет контакта для подключения нулевого проводника

В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

Как выбрать УЗИП?

При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

При каскадной защите требуется минимальный интервал 10 м между устройствами защиты

Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

Оценка значимости защищаемого оборудования

Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

Группа Что включаетГде определяется
Первая Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей МЭК 62305-3
Вторая Меры защиты для минимизации отказов электрических и электронных систем МЭК 62305-4
Третья Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии) МЭК 62305-5

Оценка риска воздействия на объект

Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (электроустановки зданий):

Читайте также  Как подключить однофазный двигатель через частотник на 380В?

  • МЭК 60364-4-443 (защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).
  • МЭК 60364-4-443-4 (выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.

Выбор оборудования по МЭК 6036

В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ. Это тот уровень, который должна выдерживать техника.
Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания Выбор защитной аппаратуры: бытовая техника и электроника Выбор защитной аппаратуры: производственное оборудование Выбор защитной аппаратуры: ответственное оборудование

Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

Источник: Компания «АСберг АС»

Устройство молниезащиты (грозозащиты) линий электросетей частного дома

Запись дневника создана пользователем Андрей-АА, 08.12.17
Просмотров: 3.611, Комментариев: 1

Устройство молниезащиты (грозозащиты) линий электросетей частного дома.
Устройства защиты от импульсных перенапряжений (УЗИП) в различных источниках обозначаются также, как УЗПН и ОПН.

Устройство молниезащиты линий электросетей частного дома, или дачи является желательным для грозозащиты дорогого электронного оборудования в доме. Особенно опасны воздушные линии электропередач, по которым довольно часто бьют молнии.

Важнейшими причинами отсутствия грозозащиты в частных домах является их высокая цена и непонимание собственником дома каково их устройство. Однако, здесь – не всё так плохо.

Дело в том, что в очень многих регионах России грозовая обстановка является вполне умеренной и прямые удары молнии в частные дома довольно маловероятны (в среднем примерно — один удар в дом за его жизненный цикл). А вот удары молний в воздушные линии электросетей случаются во много раз чаще (есть много прецедентов полного выхода из строя дорогой электроники). Это объясняется просто — протяженностью этих воздушных линий, а также тем, что они, естественно, всегда выполнены из проводников тока по которым электрические высоковольтные импульсы прекрасно расходятся по близлежащим домам. Причем при попадании молнии в провода воздушной линии электропередач вся её энергия распределится по многим объектам (домам, заземлениям) и каждому из них «достанется» не так много этой энергии, что в данной ситуации несколько снижает требования к защитным устройствам и делает их недорогими.

Пример устройства полной молниезащиты частного дома:

  • Молниеприемники с молниеотводами.
  • Контур заземления с системой уравнивания потенциалов (СУП).
  • Молниезащиты линий электросети.
  • Молниезащиты антенн, ресиверов и телевизоров.

В настоящей статье мы рассмотрим простейший и недорогой вариант – только молниезащиту электросетей, а главное – дорогой электроники, которая в домах обычно постоянно включена в сеть: телевизоров, ресиверов, роутеров, котлов, холодильников, инверторов, охранно-пожарных сигнализаций и других, а также — людей, который могут к ним прикасаться во время грозы.

Если собственник частного дома по разным причинам не может сделать себе над домом полноценный молниеприемник и к нему молниеотводы (а они – достаточно дороги и нетривиальны в исполнении) и правильное заземление, то ему остается надеяться на то, что прямого удара молнии в его дом не произойдет. Это – его выбор, хоть и не всегда верный.
В этом случае можно ограничиться молниезащитой электросетей дома, которая в комплекте с обязательным устройством заземления и системы уравнивания потенциалов обеспечит защиту от не прямых ударов молнии в дом. Такая грозозащита называется защитой 2-ой и 3-ей категории. Не прямые удары молнии это — удары в линии электропередач, или в рядом стоящие объекты, при которых электро-магнитный импульс через воздушную среду наводится на провода в доме.

Для устройства в частном доме молниезащиты 2-ой и 3-ей категории (а они нужны – обе, и та и другая) необходимо в главный электрощиток (или перед ним) установить и правильно подключить устройства защиты от импульсных перенапряжений (УЗИП) 2-ой категории, а дорогую электронику подключать к розеткам через защитные системы 3-ей категории, например, через сертифицированные на импульсные перенапряжения «фильтры». Правда, отличить настоящий фильтр-ограничитель импульсных перенапряжений от поддельного и даже от простого удлинителя сможет не каждый человек. Впрочем, вместо дорогих и громоздких «фильтров» специалисты (включая автора) могут к каждому защищаемому устройству устанавливать небольшие и простые самодельные, но эффективные элементы (3-я категория защиты).

Также, важным моментом для «идеальной» реализации системы защиты 2 и 3 категории являются установленные энергетиками УЗИПы (ОПНы) на ближайшей трансформаторной подстанции Вашего поселка, СНТ и на столбах Вашей воздушной линии электропередачи.

Эта же система защитит Вашу электронику от импульсов, зачастую появляющихся при включении мощных потребителей — сварочных аппаратов, нагревателей, электрокотлов, скважинных насосов и др.

Вывод:
Установка грозозащиты 2-3 категорий в простейшем её варианте является недорогой альтернативой выходу из строя дорогой электроники.

Примечание:
В случае если собственник частного дома позже решит ставить себе полноценную молниезащиту (с молниеприемником, молниеотводами и СУП), то описанная здесь система грозозащиты 2 и 3 категорий не будет нуждаться в переделке, а органично впишется в указанную полноценную молниезащиту.

Стабилизаторы напряжения для защиты бытовых приборов от грозы

Повышенная грозовая активность в летний сезон вынуждает принимать меры защиты от разрушающего воздействия сильнейших разрядов молнии. Защититься от мощных разрядов природного электричества можно с помощью современных электронных средств, таких как стабилизаторы напряжения и разрядники.

Существуют варианты защиты от грозы самого различного оборудования, традиционно используемого в быту (включая сетевые маршрутизаторы и другие элементы коммуникаций).

Молниезащита электросетей

Прямое попадание молнии в дом чревато не только угрозой причинения прямого ущерба строению, но и приводит к образованию сильных электромагнитных полей и наведенных токов. Эти физические эффекты являются причиной значительных по величине всплесков напряжения, способных повредить любое оборудование, которое во время грозы подключено к бытовой электросети.

Особенно часто страдают от грозы роутеры, сетевые коммутаторы (свитчи) и компьютеры. При непосредственном воздействии разрядов на электропроводку могут расплавиться провода, возникает короткое замыкание, часто приводящее к пожару.

В целях предупреждения возможных последствий грозы принято использовать специальные технические средства. Они ограничивают напряжение и обеспечивают снижение эффекта электромагнитных наводок. К числу таких средств защиты от грозы относятся:

  • специальные разрядники;
  • стабилизаторы действующего в сети напряжения;
  • ограничители перенапряжений ОВР и другие подобные им устройства.

Обратите внимание, что функции импульсного разрядника и ограничителя совмещены в целом ряде современных электроприборов, так что их деление на отдельные виды чисто условно.

Типы стабилизаторов

Стабилизаторы, как правило, применяются для защиты сетей от резких скачков питающего напряжения, вызванных перебоями в электроснабжении или же плохим его качеством. Однако в определённых ситуациях эти приборы способны обеспечить защиту электросетей и от молнии, которая ударяет во время грозы.

Различают три типа стабилизаторов напряжения:

  • простейшие регуляторы типа «ЛАТР»;
  • системы релейного типа;
  • симисторные стабилизаторы.

Для защиты электрических сетей от грозы применяются лишь быстродействующие образцы второго и третьего типа стабилизаторов, обеспечивающие требуемую скорость реакции на грозовой разряд.

Дополнительная информация. Для защиты от природного электричества оптимально подходят промышленные стабилизаторы с грозозащитой, оборудованные специальным разрядным блоком.

При этом наиболее предпочтительны приборы на симисторах, работающие по принципу ключевой коммутации силовых цепей. Единственным недостатком таких стабилизаторов является высокая стоимость.

Разрядники (ограничители перенапряжений)

Применение ограничителей в качестве элемента защиты электрооборудования в настоящее время получило широкое распространение, что объясняется их относительно невысокой ценой и эффективностью действия. Известно три модификации этих устройств, каждой из которых присвоен свой класс, аналогичный характеристикам сетевых автоматических выключателей (классы В, С и D соответственно).

Приборы первого класса сохраняют работоспособность силовых цепей путём отвода опасных наводок на землю. Устройство выполняется в виде модульной конструкции с герметично встроенным разрядником, реагирующим на сверхтоки.

Такой блок устанавливается в распределительном щите в кабель ввода (до электросчётчика) и обеспечивает защиту от переноса опасных наводок на защитный проводник PEN. Приборы этого класса устанавливаются на промышленных объектах, в государственных учреждениях и заведениях, а также в строениях, входящих в состав крупных жилых комплексов.

Разрядники второго типа (класс С) по своему функционалу полностью аналогичны рассмотренным выше, с тем лишь отличием, что они могут срабатывать и от обычных переключений, сопровождающихся всплесками тока в электросети.

И, наконец, приборы класса D предназначаются для защиты от грозы отдельных потребителей, подключённых к данной электрической сети. Они устанавливаются непосредственно в силовых розетках пользователя, защищая электропроводку от импульсных перенапряжений.

С помощью таких встроенных устройств удаётся защитить от грозы компьютер, а также обеспечить бесперебойную работу имеющегося в квартире роутера.

Читайте также  Что такое сервопривод и как он работает

Устройства для защиты телекоммуникаций

Несмотря на то, что коаксиальные кабельные сети отличаются высокой устойчивостью к воздействию внешних силовых полей – в определённых условиях (чаще всего – во время грозы) они достаточно уязвимы. Аналогично дело обстоит и с так называемыми «витыми парами», также нуждающимися в защите от сильных электромагнитных наводок и перенапряжений.

Для устранения всех перечисленных угроз промышленностью разработаны устройства под названием «ГЗ-RS485-Т», защищающих двухпроводную витую пару, как от наводок, так и от вторичной электростатики. Эффективность действия оборудования этого класса обеспечивается шунтированием помех на шину заземления или автоматическим отключением канала.

Необходимо также коснуться вопроса защищённости линий спутниковой связи. При организации работы таких каналов с профессиональным названием «сателлит» (SATELLITE LINE) защита от перенапряжения также обеспечивается с помощью специального оборудования.

УЗИП — что это такое, описание и схемы подключения в частном доме

Перенапряжение — это превышение максимального показателя напряжения для той или иной сети. Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды. Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов. Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

Что такое УЗИП и для чего оно нужно?

УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

УЗИП бывает двух типов:

  • ОПС — ограничитель перенапряжений сети;
  • ОИН — ограничитель импульсных напряжений.

Принцип действия и устройство

Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) — при перенапряжении устройство направляет импульсы на землю (фаза — земля и нейтраль – земля);
  • Симметричный (дифференциальный) — при перенапряжении энергия направляется на другой активный проводник (фаза — фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Комбинированные УЗИП

УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

Классы УЗИП

Существует всего три класса устройств по степени защиты:

  • Устройство I класса (категория перенапряжения IV) — защищает систему от прямых ударов молнии, и устанавливается в главном распределительном щите или в вводно-распределительном устройстве (ВРУ). Обязательно нужно использовать данное устройство, если здание находится на открытой местности и окружено множеством высоких деревьев, что увеличивает риск грозового воздействия.
  • Устройство II класса (категория перенапряжения III) — используется как дополнение к устройству I класса для защиты сети от коммутационного воздействия, т.е. от внутреннего перенапряжения сети. Устанавливается в распределительном щите.
  • Устройство III класса (категория перенапряжения II) — применяется для защиты от остаточных атмосферных и коммутационных перенапряжений, а также для устранения высокочастотных помех прошедших через устройство II класса. Проводится монтаж как в обычные розетки или разветвительные коробки, так и в сами электроприборы, которые необходимо обезопасить.

Классификация по степени разряда тока:

  • Класс В — разрядки воздушные или же газовые с током разряда от 45 до 60 кА. Устанавливаются на вводе в здание в главном щите или в вводно-распределительном устройстве.
  • Класс С — варисторные модули с токами разряда порядка 40 кА. Устанавливаются в дополнительных щитах.
  • Классы С и D применяются в тандеме в случае, если необходим подземный кабельный ввод.

ВАЖНО! Расстояние между УЗИП должно быть не меньше 10 метров по длине проводки.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Ошибки при подключении

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

Источник: gk-rosenergo.ru

Оцените статью
klub-winx
Добавить комментарий