Системный подход к функционированию клетки
Изучение динамических процессов, происходящих в клетке во время жизни, является по-прежнему одной из наиболее трудных и увлекательных областей исследований современной науки. Она содержит множество тайн, и каждая раскрытая тайна спасает сотни тысяч жизней, поскольку дает ключ к созданию уникальных способов сохранения здоровья и улучшения самочувствия человека. Именно поэтому над раскрытием тайн природы, заложенных в клетке, сегодня трудятся не только биологи и генетики, но и биофизики, биохимики, системные аналитики, специалисты в области информатики, лингвистики и других областей знаний.
Клетка является . В один и тот же момент времени в ней происходят десятки тысяч разнообразных динамических процессов. Для их изучения ученые используют . Модель клетки должна отражать свойства и функции живой клетки. Например, свойство клетки приспосабливаться при изменении параметров внешней срды (темпеауры, давления, влажности воздуха и других). Однако ни в какой модели нельзя учесть все свойства реальной клетки. Даже если бы нам и удалось встроить в модель значительную часть этих свойств, то задача получилась бы столь сложной, что решение ее было бы чрезвычайно затруднено или даже вовсе невозможно.
Тем не менее, ученые постоянно трудятся над созданием различных моделей, обладающих свойствами живой системы. По совокупности процессов, происходящих в клетке, ее можно сравнить с биороботом, наделенным, с точки зрения современной науки, фантастически совершенными свойствами: самовоспроизведения, самообучения и самонастройки.
В технике робот представляет собой информационно-вычислительный комплекс. Систему его функционирования можно разделить условно на пять основных подсистем: , , , и . В свою очередь данные подсистемы можно разделить на два класса. Первый класс включает техническую подсистему, представляющую собой материальные средства комплекса (специалисты называют их “железом”), и второй класс – остальные четыре подсистемы, отвечающие за организацию информационного процесса.
Аналогом технической подсистемы в клетке являются ее биологическая субстанция, имеющая определенную форму и строение. В качестве строительного материала в ней используются органические вещества (биополимеры). Второй класс объединяет подсистемы, отвечающие за организацию динамических процессов – информационную жизнь клетки. Устройство клетки является настолько сложным, что воспроизвести искусственно подобную ей систему не по силам ни одной лаборатории мира.
В последние полвека ученые создали немало модлй разнх искусственных систем: самолетов, ядерных реакторов, роботов. Более сложным оказалось моделирование природных явлений. Одним из таких примеров является моделирование процессов, позволяющее предсказывать погоду. Опыт, накопленный при проведении таких работ, позволил разработать общую теорию систем, обобщающую и раскрывающую фундаментальные свойства сложных объектов.
Для упрощения понимания протекания внутриклеточных процессов используем разные подходы к рассмотрению динамических процессов (биофизических, биохимических, энергетических, информационных). При этом мы будем вынуждены в большей или меньшей степени идеализировать свойства описываемой системы, учитывая только те решающие факторы, которые определяют черты поведения, обусловленные конкретным видом динамических процессов. Данный подход к рассмотрению вопроса позволит представить нам общие свойства .
Клетка является сложной открытой динамической системой, содержащей множество входов и выходов (смотри рисунок 1.4.1).
Рисунок 1.4.1. Системная модель клетки. Общие входы и выходы |
Поддержание стабильности подсистемы жизнеобеспечения происходит за счет выработки энергии, , синтеза клеточных и тканевых структур, размножения клеток.
Выработка необходимой для жизни клетки и организма в целом энергии происходит в процессе протекания процессов распада клеточных и тканевых структур (), а также сложных соединений, содержащих энергию.
Трансмембранный перенос веществ обеспечивает поступление на входы клетки необходимых веществ и выведение через ее выходы продуктов обмена и веществ, используемых другими клетками организма.
В процессе синтеза тканевых и клеточных структур, а также необходимых для жизнедеятельности соединений () энергия расходуется и накапливается. С пищей питательные вещества поступают, как правило, в виде продуктов, образующихся в результате белков, жиров и углеводов. К ним относятся моносахара, аминокислоты, жирные кислоты и моноглицериды. Процесс синтеза обеспечивает восстановление структур клетки, подвергающихся распаду.
Размножение клеток в организме обеспечивает его рост и развитие, восстановление клеточных структур, способствует сохранению целостной структуры и нормальному функционированию организма.
Жизнедеятельность самой клетки обеспечивается взаимодействием всех ее органелл и клеточной мембраны. Как было сказано ранее клеточные органеллы находятся в гиалоплазме, состоящей из воды и находящихся в ней различных ионов и органических веществ (глюкозы, аминокислот, белков, фосфолипидов и других). Гиалоплазма составляет внутреннюю среду клетки, обеспечивающую взаимодействие всех клеточных структур посредством , потребляемых и синтезируемых клеткой. Гиалоплазма также хранит гликоген, липиды, пигменты. Большинство внутренних органелл имеют свои мембраны (ядро, эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы). Они построены по тому же принципу, что и клеточные мембраны. Некоторые внутриклеточные органеллы не имеют собственной мембраны (рибосомы, микротрубочки, микрофиламенты и промежуточные филаменты). Каждая органелла выполняет свои специфические функции (таблица 1.4.1).
Таблица 1.4.1. Структура и функции основных клеточных элементов |
Названиеэлемента Лоализацияи характеристика Структура,состав Основныефункции
Ядро | Чаще расположено в центре клетки; заполнено нуклеоплазмой (вода, белки, нуклеотиды, РНК, ферменты) | Округлое образование, ограниченное двухмембранной оболочкой, содержащей множество пор (до 3/4 поверхности оболочки!) | Содержит генетическую информацию в виде хромосом (хроматина); посредством генов регулирует белковый синтез |
Клеточная мембрана (цитолемма) | Оболочка клетки, отграничивающая ее от других структур (клеток, волокон, межклеточного вещества) | Двойной слой липидов с погруженными в него белками и находящимся на его поверхности слоем полисахаридов | – транспортная; – рецепторная; – межклеточные соединения; – барьерная; – взаимодействие с другими клетками и структурами |
Хромосомы | Х-образные нитевидные структуры (23 пары), погруженные в нуклеоплазму. | Компактно “упакованные” нити ДНК, приобретающие такую форму только на этапе деления клетки | Носители генетической информации. Передают ее поровну дочерним клеткам в процессе деления (митоза) |
Ядрышки (одно или несколько) | Плотные структуры, расположенные в центре ядра; производное хроматина | Безмембранные структуры, состоящие из фибрилл (волокон) и петель хроматина | Место образования рибосомных РНК; участвует в синтезе белка (ДНК – донор информации) |
Цитоплазма | Внутреннее содержимое клетки (за исключением ядра) | Состоит из гиалоплазмы, клеточных органелл и включений | Смотри функции гиалоплазмы и клеточных органелл |
Гиалоплазма (матрикс) | Основное вещество цитоплазмы, в которое погружены клеточны органеллы и включения | Коллоидная система, состоящая из воды (80%), белков, солей, аминокислот, полисахаридов и др. соединений | Заполняя внутриклеточное пространство, объединяет различные структуры клетки и обеспечивает их взаимодействие |
Клеточные органеллы (находятся в гиалоплазме) | |||
иохондрии (от 1 до нескольких сотен в одной клетке) |
Палочковидные или шарообразные двухмембранные структуры. Их число определяется “специализацией” клетки | Наружная мембрана имеет ровные контуры, внутренняя образует складки, гребни (кристы) | “Энергетические станции клетки”: аккумулирование энергии в виде АТФ, обеспечение клетки энергией в соответствии с ее потребностями |
Эндоплазматическая сеть гладкая (агранулярная) | Мембранная органелла, имеющая собственное ферментное содержимое | Комплекс сообщающихся между собой пузырьков, плоских мешков и трубочек | Метаболизм липидов, некоторых полисахаридов. Разрушает вредные для клетки вещества |
Эндоплазматическая сеть шероховатая (гранулярная) | Часть эндоплазматической сети, на наружной поверхности которой находятся рибосомы (смотри ниже) | Посредством рибосом участвует в синтезе белка (смотри функции рибосом) | |
Рибосомы | Гранулы, свободно расположенные в гиалоплазме или фиксированные на поверхности эндоплазматической сети | Состоят из белков и молекул РНК (примерно в равных весовых соотношениях) | Сборка белков из аминокислот в строгом соответствии с генетической информацией |
Лизосомы | Замкнутые мембранные структуры (пузырьки). Бывают первичные и вторичные (см. в тексте) | Содержат ферменты, расщепляющие жиры, белки, углеводы, нуклеиновые кислоты | Ферментное расщепление сложных питательных веществ; утилизация и удаление из клетки дефектных органелл |
Аппарат (комплекс)Гольджи | Чаще расположен около ядра. Комплекс уплощенных цистерн и мелких пузырьков | Содержит ферменты для синтеза полисахаридов и образования их комплексов с белками (мукопротеидов) | Накопление, “упаковка» и выведение за пределы клетки веществ, синтезированных в эндоплазматической сети. Формирование первичных лизосом |
Специфические функции характеризуются выполнением каждой клеткой определенной задачи, которая, в свою очередь, определяется генетически запрограммированным алгоритмом. Например, работа нервных клеток заключается в восприятии сигнала, его передаче, переработке и хранении информации. Возбуждение мембраны нейрона заканчивается выбросом медиатора в синаптическую щель. Таким образом, путем трансформации электрического импульса в химический сигнал происходит передача информации по всем звеньям нервной системы. Каждая секреторная клетка осуществляет синтез и выделение специфических веществ, важных для функционирования организма. В результате секреции выделяются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активые соединения. Секреторные клетки участвуют в работе и регулировании функций многих органов: желудка, поджелудочной железы, щитовидной железы и других. Мышечные клетки в организме выполняют сократительную функцию: сокращения клеток поперечнополосатой мускулатуры обеспечивают работу опорно-двигательного аппарата, гладкой мускулатуры – работу внутренних органов.
Входы подсистемы специфических функций определяют проникновение в клетку гормонов, медиаторов, биологически активных веществ и других соединений, выходы – выполнение специфических функций клетки (выделение гормона, проведение нервного импульса, сокращение мышечной клетки). Именно реализация специфических функций клеток обеспечивает слаженную работу организма как единого целого.
В реальности организм человека существует, постоянно подвергаясь воздействию самых разнообразных и изменчивых . К ним могут быть отнесены температура окружающей среды, давление и влажность воздуха, концентрация в атмосфере вредных для организма веществ и так далее. Они могут меняться во времени как , так и образом. На клеточном уровне схема внешних воздействий приведена на рисунке 1.4.3.
Рисунок 1.4.3. Системная модель клетки. Воздействие внешних факторов |
Работа подсистемы жизнеобеспечения характеризуется поддержанием на генетически определенном уровне набора параметров: температура, концентрация белков, содержания воды, уровень кислотно-щелочного равновесия внутри клетки, ее мембранный потенциал и множество других. В процессе эволюции клетка научилась сохранять благоприятную внутреннюю среду, несмотря на изменение внешних условий. Главный механизм клетки как самоорганизующейся системы, способствующий поддержанию определенных величин в физиологически допустимых границах и заложенный в основу подсистемы жизнеобеспечения, называется . Само свойство клетки поддерживать постоянство внутренней среды на генетически заданном уровне называется . Клетка хранит информацю о значениях всех параметров, обеспечивающих ее жизнедеятельность и выполнение свойственных ей функций. Гомеостаз реализуется за счет использования механизма обратной связи (смотри рисунок 1.4.4). Более подробно об этом будет рассказано в разделе “Принципы и алгоритмы регуляции функций организма (информационный подход)”.
Рисунок 1.4.4. Системная модель летки. Менизм обратной связи |
Каждое мгновение жизни клетки характеризуется набором значений текущих параметров (показателей): температурой внутри клетки, концентрацией питательных веществ и других. Совокупность значений этих параметров в некоторый момент времени определяет . Одни из данных параметров поддерживаются на неизменном уровне, другие могут меняться без потери устойчивости системы в целом.
Сам по себе известен и хорошо понятен принцип работы механизма обратной связи. Схема регулирования параметров клетки изображена на рисунке 1.4.4. Но, как внутри клетки одновременно и слаженно (синхронно) работают тысячи таких механизмов, и при этом происходит сравнение их текущих параметров с генетически заданными? Это остается загадкой природы.
Благодаря приспособительным (адаптационным) механизмам физические и химические параметры, определяющие жизнедеятельность клетки, меняются в сравнительно узких пределах, несмотря на значительные изменения внешних условий.
Как любая динамическая система, клетка имеет .
Зоны устойчивости характеризуются пределами изменений значений параметров входных сигналов подсистемы жизнеобеспечения, при которых процессы в клетке протекают нормально. В качестве входных сигналов можно рассматривать количество питательных веществ, содержание кислорода, углекислого газа, гормонов в крови и другие. Внутриклеточные параметры, например показатель кислотно-щелочного равновесия (рН), поддерживаются на заданном относительно постоянном уровне.
В цитоплазме клеток рН составляет 6,7-7,3 (разница, определяющая зону устойчивости, составляет 0,6). Более строгими являются требования к изменению этого показателя со стороны крови: рН крови может изменяться только в пределах 7,35-7,45 (зона устойчивости составляет 0,1, что в 6 раз меньше, чем для рН цитоплазмы клеток).
При отклонении значений этих параметров за пределы зон устойчивости изменяется скорость протекания биохимических реакций, вплоть до торможения. Активность большинства клеточных ферментов зависит от показателя рН, так как при его повышении внутри клеток нарушается структура белка и, в частности, ферментов. Считается, что увеличение рН внутри клеток поджелудочной железы служит одним из сигналов начала реакций запрограммированной их гибели (апоптоза).
Постоянство температуры внутри клетки также способствует оптимальному течению в ней химических реакций. Организм человека удерживает температуру тела на определенном уровне. Жизненные процессы в организме протекают в узких температурных границах: при температуре от 22 °C до 43 °C. Повышение температуры живых тканей выше 45-47 °С сопровождается необратимыми изменениями и прекращением жизни из-за свертывания белков и инактивации ферментов. При температуре ниже 22 °C наступает торможение работы клетки, обусловленное значительным замедлением обмена веществ и энергии.
Функционирование , также невозможно без механизма обратной связи, поддерживающего гомеостаз в клетке. Например, в системе гормональной регуляции постоянный уровень, в частности, кортикостероидов поддерживается благодаря такому механизму. Гипофиз отслеживает концентрацию данных гормонов в крови и при ее уменьшении выделяет в кровь адренкортикотропный гормон (АКТГ). АКТГ стимулирует образование кортикостероидов в корковом веществе надпочечников, концентрация гормонов увеличивается. При повышенном уровне гормонов, наоборот, идет сигнал на прекращение выработки АКТГ.
Существуют диапазоны колебаний внешних воздействий (температуры окружающей среды, уровня электромагнитных излучений и других), в пределах которых клетка остается и независимо от времени их воздействия. риедем несколько примеров при внешних воздействиях. Зимой и летом, при температуре окружающего воздуха в диапазоне от –70 до +50 °С температура тела человека остается практически постоянной, изменяясь всего на несколько долей градуса. В жаркий день даже небольшое повышение температуры тела дает сигнал к усилению активности потовых желез, кожа становится влажной, испарение воды с ее поверхности способствует охлаждению тела. И напротив, в холодную погоду поверхностные сосуды сужаются, потеря тепла уменьшается, а выработка – увеличивается, возникает защитная реакция – дрожь, “мурашки”.
Внутренние параметры клетки остаются в норме после прекращения действия возмущающего фактора, если он не превысил допустимые пределы. Таким образом, можно выделить допустимые интервалы внешних параметров (температуры, влажности, атмосферного давления, ионизирующего излучения и других), при которых система клеточного гомеостаза поддерживает относительное постоянство внутренней среды то есть возвращает параметры в нормальное состояние, при условии, что внешние воздействия не выводят их значения за пределы зон устойчивости.
. Будем говорить, что система устойчива в малом, но неустойчива в большом, если ограниченное изменение входного сигнала (набора входных сигналов) ведет к изменению в ограниченном диапазоне значений выходного сигнала (набора выходных сигналов).
Существование клетки в определенном диапазоне значений параметров хорошо прослеживается при воздействии радиации, или радиоактивного облучения. Учитывая, что каждый человек подвергается воздействию природной радиации, можно проследить, кк ионизирующее излучение оказывает воздействие на клетку. Основу этого воздействия составляет передача энергии радиации клеткам организма.
На Земле всегда есть природный радиоактивный фон, который создают космическое излучение и радионуклиды, рассеянные в окружающей среде и всегда находящиеся в живых организмах. Радиация непрерывно воздействует на все живые организмы, в том числе на каждую клетку. Но ее уровень чрезвычайно мал, в среднем 0,2 сГрэй в год для человека, что в миллион раз меньше вредной для организма дозы облучения. Данный природный радиоактивный фон необходим для нормального существования клеточной системы.
Однако случайное облучение радиацией большой мощности способно привести к разрушению, повреждению и изменению определенных клеточных структур (белков, ДНК, РНК и их комплексов), гибели клеток. Большие дозы могут вызвать полное прекращение деления клеток.
К примеру, доказано, что кожа не выдерживает радиоактивного облучения или длительного и интенсивного облучения солнечным светом, так как разрушаются соединительнотканные структуры (коллаген и эластин), обеспечивающие плотность и упругость кожи, появляются признаки преждевременного старения.
Таким образом, если действует внешнее воздействие, при котором клетка теряет устойчивость, и нарушаются допустимые параметры ее существования, то возникает ряд патологических процессов, приводящих к гибели системы клетки в целом.
. Каждая система, в том числе и система клетки, в любой момент времени находится в определенном состоянии, характеризуемом набором конкретных значений ряда параметров. Например, на мембранах нервных клеток существует определенная разность потенциалов, изменение которой приводит к возникновению и распространению нервного импульса по аксону. Переход из одного состояния системы в другое осуществляется за счет изменения значений параметров входных сигналов с учетом внешних воздействий. Так поступление внешнего стимула (света, шума) на рецепторную клетку приводит к изменению ее состояния (возбуждению), активации различных биохимических процессов. Будем говорить о том, что система управляема, если за счет изменения значений входных сигналов мы можем перевести ее состояние из начального в заранее определенное. Например, при избыточном поступлении кислорода в организм, происходит увеличение содержания кислорода в крови и соответствующая активация некоторых процессов в клетке (например, дыхания). Клетка начинает усиленно работать. Таким образом, – это способность перевода из текущего состояния в другие запланированные.
В данном разделе были отмечены и рассмотрены общие характеристики клетки как системы. Жизнедеятельность клетки связана с биофизическими, биохимическими, информационными и энергетическими процессами.
Источник: